Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea.
Biomaterials. 2013 Sep;34(28):6607-14. doi: 10.1016/j.biomaterials.2013.05.067. Epub 2013 Jun 15.
We report a microfluidic array for investigating and quantitatively analyzing human neural stem cell (hNSC) self-renewal and differentiation in an in vivo-like microenvironment. NSC niche conditions, including three-dimensional (3D) extracellular matrices and low oxygen tension, were effectively reconstituted in the microfluidic array in a combinatorial manner. The array device was fabricated to be detachable, rendering it compatible with quantitative real-time polymerase chain reaction for quantifying the effects of the biomimetic conditions on hNSC self-renewal and differentiation. We show that throughput of 3D cell culture and quantitative analysis can be increased. We also show that 3D hypoxic microenvironments maintain hNSC self-renewal capacity and direct neuronal commitment during hNSC differentiation.
我们报告了一种用于在类似于体内的微环境中研究和定量分析人神经干细胞(hNSC)自我更新和分化的微流控阵列。以组合的方式有效地在微流控阵列中重建了 NSC 生态位条件,包括三维(3D)细胞外基质和低氧张力。该阵列装置被设计为可分离的,使其与定量实时聚合酶链反应兼容,以量化仿生条件对 hNSC 自我更新和分化的影响。我们表明可以增加 3D 细胞培养和定量分析的通量。我们还表明,3D 低氧微环境在 hNSC 分化过程中维持 hNSC 的自我更新能力并直接诱导神经元分化。