Suppr超能文献

用于经皮免疫的基于颗粒的疫苗制剂。

Particle based vaccine formulations for transcutaneous immunization.

作者信息

Mittal Ankit, Raber Anne S, Lehr Claus-Michael, Hansen Steffi

机构信息

Biopharmaceutics and Pharmaceutical Technology; Saarland University; Saarbruecken, Germany.

出版信息

Hum Vaccin Immunother. 2013 Sep;9(9):1950-5. doi: 10.4161/hv.25217. Epub 2013 Jun 18.

Abstract

Vaccine formulations on the basis of nano- (NP) or microparticles (MP) can solve issues with stabilization, controlled release, and poor immunogenicity of antigens. Likewise transcutaneous immunization (TCI) promises superior immunogenicity as well as the advantages of needle-free application compared with conventional intramuscular injections. Thus the combination of both strategies seems to be a very valuable approach. However, until now TCI using particle based vaccine formulations has made no impact on medical practice. One of the main difficulties is that NPs and MPs cannot penetrate the skin to an extent that would allow the application of the required dose of antigen. This is due to the formidable stratum corneum (SC) barrier, the limited amount of antigen in the formulation and often an insufficient immunogenicity. A multitude of strategies are currently under investigation to overcome these issues. We highlight selected methods presenting a spectrum of solutions ranging from transfollicular delivery, to devices disrupting the SC barrier and the combination of particle based vaccines with adjuvants discussing their advantages and shortcomings. Some of these are currently at an experimental state while others are already in clinical testing. All methods have been shown to be capable of transcutaneous antigen delivery.

摘要

基于纳米颗粒(NP)或微粒(MP)的疫苗制剂可以解决抗原的稳定性、控释和免疫原性差等问题。同样,与传统的肌肉注射相比,经皮免疫(TCI)具有卓越的免疫原性以及无针接种的优势。因此,将这两种策略结合起来似乎是一种非常有价值的方法。然而,到目前为止,使用基于颗粒的疫苗制剂进行经皮免疫尚未对医疗实践产生影响。主要困难之一是纳米颗粒和微粒无法穿透皮肤至能施用所需剂量抗原的程度。这是由于强大的角质层(SC)屏障、制剂中抗原量有限以及免疫原性往往不足所致。目前正在研究多种策略来克服这些问题。我们重点介绍了一些选定的方法,这些方法展示了一系列解决方案,从经毛囊递送、破坏角质层屏障的装置,到基于颗粒的疫苗与佐剂的组合,并讨论了它们的优缺点。其中一些目前处于实验阶段,而另一些已经在进行临床试验。所有这些方法都已被证明能够实现经皮抗原递送。

相似文献

1
Particle based vaccine formulations for transcutaneous immunization.
Hum Vaccin Immunother. 2013 Sep;9(9):1950-5. doi: 10.4161/hv.25217. Epub 2013 Jun 18.
2
Overcoming or circumventing the stratum corneum barrier for efficient transcutaneous immunization.
Drug Discov Today. 2018 Jan;23(1):181-186. doi: 10.1016/j.drudis.2017.09.017. Epub 2017 Oct 5.
3
Non-invasive delivery of nanoparticles to hair follicles: a perspective for transcutaneous immunization.
Vaccine. 2013 Jul 25;31(34):3442-51. doi: 10.1016/j.vaccine.2012.12.048. Epub 2013 Jan 2.
4
Current Progress in Particle-Based Systems for Transdermal Vaccine Delivery.
Front Immunol. 2020 Feb 26;11:266. doi: 10.3389/fimmu.2020.00266. eCollection 2020.
5
Transfollicular delivery takes root: the future for vaccine design?
Expert Rev Vaccines. 2014 Jan;13(1):5-7. doi: 10.1586/14760584.2014.862500.
6
Transcutaneous vaccines: novel advances in technology and delivery for overcoming the barriers.
Vaccine. 2011 Aug 26;29(37):6179-90. doi: 10.1016/j.vaccine.2011.06.086. Epub 2011 Jul 6.
7
Effective transcutaneous immunization by antigen-loaded flexible liposome in vivo.
Int J Nanomedicine. 2011;6:3241-50. doi: 10.2147/IJN.S26152. Epub 2011 Dec 8.
8
Transcutaneous vaccines--current and emerging strategies.
Expert Opin Drug Deliv. 2013 Apr;10(4):485-98. doi: 10.1517/17425247.2013.760542. Epub 2013 Jan 15.
9
Intradermal delivery of vaccine nanoparticles using hollow microneedle array generates enhanced and balanced immune response.
J Control Release. 2019 Jan 28;294:268-278. doi: 10.1016/j.jconrel.2018.12.026. Epub 2018 Dec 17.

引用本文的文献

1
Technological Approaches for Improving Vaccination Compliance and Coverage.
Vaccines (Basel). 2020 Jun 16;8(2):304. doi: 10.3390/vaccines8020304.
2
Current Progress in Particle-Based Systems for Transdermal Vaccine Delivery.
Front Immunol. 2020 Feb 26;11:266. doi: 10.3389/fimmu.2020.00266. eCollection 2020.
3
Enhanced transdermal delivery of meloxicam by nanocrystals: Preparation, and evaluation.
Asian J Pharm Sci. 2018 Nov;13(6):518-526. doi: 10.1016/j.ajps.2017.10.004. Epub 2017 Dec 7.
5
Effect of vaccine administration modality on immunogenicity and efficacy.
Expert Rev Vaccines. 2015;14(11):1509-23. doi: 10.1586/14760584.2015.1081067. Epub 2015 Aug 27.
6
Applications of nanomaterials as vaccine adjuvants.
Hum Vaccin Immunother. 2014;10(9):2761-74. doi: 10.4161/hv.29589. Epub 2014 Nov 17.

本文引用的文献

2
Topical vaccination with functionalized particles targeting dendritic cells.
J Invest Dermatol. 2013 Aug;133(8):1933-41. doi: 10.1038/jid.2013.79. Epub 2013 Feb 20.
3
Non-invasive delivery of nanoparticles to hair follicles: a perspective for transcutaneous immunization.
Vaccine. 2013 Jul 25;31(34):3442-51. doi: 10.1016/j.vaccine.2012.12.048. Epub 2013 Jan 2.
6
Transcutaneous immunization: an overview of advantages, disease targets, vaccines, and delivery technologies.
Annu Rev Chem Biomol Eng. 2010;1:175-201. doi: 10.1146/annurev-chembioeng-073009-100948.
7
Ultradeformable archaeosomes as new topical adjuvants.
Nanomedicine. 2012 Nov;8(8):1319-28. doi: 10.1016/j.nano.2012.02.008. Epub 2012 Feb 24.
8
Nanoparticles for transcutaneous vaccination.
Microb Biotechnol. 2012 Mar;5(2):156-67. doi: 10.1111/j.1751-7915.2011.00284.x. Epub 2011 Aug 19.
9
Robust IgG responses to nanograms of antigen using a biomimetic lipid-coated particle vaccine.
J Control Release. 2012 Feb 10;157(3):354-65. doi: 10.1016/j.jconrel.2011.07.029. Epub 2011 Jul 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验