Department of Psychology, University of California, Berkeley, California, USA.
Biol Reprod. 2013 Aug 1;89(2):23. doi: 10.1095/biolreprod.113.109587. Print 2013 Aug.
The dorsomedial nucleus (DMN) of the hypothalamus, the only site within the mediobasal hypothalamus of Syrian hamsters that both binds melatonin and has abundant concentrations of androgen receptors, has been proposed as a target tissue for induction of seasonal changes in brain sensitivity to steroid negative feedback. We tested whether DMN ablation, which does not interfere with pineal gland secretion of melatonin in short day lengths, prevents testicular regression by altering sensitivity to steroid negative feedback. Hamsters with DMN lesions, unlike control hamsters, failed to undergo testicular regression after transfer from a long (14 h light/day) to a short day length (8 h light/day); however, increased negative-feedback inhibition of follicle-stimulating hormone by testosterone was not compromised by ablation of the DMN, indicating that this tissue is not an essential mediator of seasonal changes in feedback sensitivity. We propose a redundant neural network comprised of multiple structures, each of which contributes to neuroendocrine mechanisms, that determines the effect of short days on gonadal function.
下丘脑背内侧核(DMN)是叙利亚仓鼠中唯一既结合褪黑素又富含雄激素受体的中脑基底部核团,被认为是诱导大脑对甾体类负反馈敏感性季节性变化的靶组织。我们检测了 DMN 消融术是否通过改变对甾体类负反馈的敏感性来防止睾丸退化,该手术在短日照条件下不干扰松果腺褪黑素的分泌。与对照组仓鼠不同,DMN 损伤的仓鼠在从长日照(14 小时光照/天)转移到短日照(8 小时光照/天)后,睾丸没有发生退化;然而,DMN 消融并没有损害由睾酮引起的促卵泡激素的负反馈抑制作用,表明该组织不是反馈敏感性季节性变化的必要中介。我们提出了一个由多个结构组成的冗余神经网络,每个结构都有助于神经内分泌机制,决定了短日照对性腺功能的影响。