Suppr超能文献

探讨组织重构在人类心房颤动纤维化病变中的作用的机制研究。

Mechanistic inquiry into the role of tissue remodeling in fibrotic lesions in human atrial fibrillation.

机构信息

The Johns Hopkins University, Department of Biomedical Engineering and Institute for Computational Medicine, Baltimore, Maryland, USA.

出版信息

Biophys J. 2013 Jun 18;104(12):2764-73. doi: 10.1016/j.bpj.2013.05.025.

Abstract

Atrial fibrillation (AF), the most common arrhythmia in humans, is initiated when triggered activity from the pulmonary veins propagates into atrial tissue and degrades into reentrant activity. Although experimental and clinical findings show a correlation between atrial fibrosis and AF, the causal relationship between the two remains elusive. This study used an array of 3D computational models with different representations of fibrosis based on a patient-specific atrial geometry with accurate fibrotic distribution to determine the mechanisms by which fibrosis underlies the degradation of a pulmonary vein ectopic beat into AF. Fibrotic lesions in models were represented with combinations of: gap junction remodeling; collagen deposition; and myofibroblast proliferation with electrotonic or paracrine effects on neighboring myocytes. The study found that the occurrence of gap junction remodeling and the subsequent conduction slowing in the fibrotic lesions was a necessary but not sufficient condition for AF development, whereas myofibroblast proliferation and the subsequent electrophysiological effect on neighboring myocytes within the fibrotic lesions was the sufficient condition necessary for reentry formation. Collagen did not alter the arrhythmogenic outcome resulting from the other fibrosis components. Reentrant circuits formed throughout the noncontiguous fibrotic lesions, without anchoring to a specific fibrotic lesion.

摘要

心房颤动(AF)是人类最常见的心律失常,当源自肺静脉的触发活动传播到心房组织并退化为折返活动时,就会引发 AF。尽管实验和临床发现表明心房纤维化与 AF 之间存在相关性,但两者之间的因果关系仍不清楚。本研究使用了一系列基于具有准确纤维化分布的特定于患者的心房几何形状的不同纤维化表示的 3D 计算模型,以确定纤维化在将肺静脉异位搏动降级为 AF 的过程中所起的作用的机制。模型中的纤维化病变采用以下组合表示:缝隙连接重构;胶原蛋白沉积;以及具有电或旁分泌效应对相邻心肌细胞的成纤维细胞增殖。研究发现,缝隙连接重构的发生以及随后在纤维化病变中的传导减慢是 AF 发展的必要但非充分条件,而成纤维细胞增殖以及随后对纤维化病变内相邻心肌细胞的电生理效应是折返形成的充分条件。胶原蛋白不会改变其他纤维化成分导致的心律失常结果。折返环在非连续的纤维化病变中形成,而无需锚定在特定的纤维化病变上。

相似文献

1
Mechanistic inquiry into the role of tissue remodeling in fibrotic lesions in human atrial fibrillation.
Biophys J. 2013 Jun 18;104(12):2764-73. doi: 10.1016/j.bpj.2013.05.025.
3
Methodology for patient-specific modeling of atrial fibrosis as a substrate for atrial fibrillation.
J Electrocardiol. 2012 Nov-Dec;45(6):640-5. doi: 10.1016/j.jelectrocard.2012.08.005. Epub 2012 Sep 19.
6
Cardiac fibroblasts : Active players in (atrial) electrophysiology?
Herzschrittmacherther Elektrophysiol. 2018 Mar;29(1):62-69. doi: 10.1007/s00399-018-0553-3. Epub 2018 Feb 1.
8
Virtual electrophysiological study of atrial fibrillation in fibrotic remodeling.
PLoS One. 2015 Feb 18;10(2):e0117110. doi: 10.1371/journal.pone.0117110. eCollection 2015.
10
Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern.
Cardiovasc Res. 2016 Jun 1;110(3):443-54. doi: 10.1093/cvr/cvw073. Epub 2016 Apr 7.

引用本文的文献

5
A Review of Personalised Cardiac Computational Modelling Using Electroanatomical Mapping Data.
Arrhythm Electrophysiol Rev. 2024 May 20;13:e08. doi: 10.15420/aer.2023.25. eCollection 2024.
7
Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation.
Physiol Rev. 2024 Jul 1;104(3):1265-1333. doi: 10.1152/physrev.00017.2023. Epub 2023 Dec 28.
9
Up digital and personal: How heart digital twins can transform heart patient care.
Heart Rhythm. 2024 Jan;21(1):89-99. doi: 10.1016/j.hrthm.2023.10.019. Epub 2023 Oct 21.
10
Electro-Mechanical Alterations in Atrial Fibrillation: Structural, Electrical, and Functional Correlates.
J Cardiovasc Dev Dis. 2023 Mar 31;10(4):149. doi: 10.3390/jcdd10040149.

本文引用的文献

1
Atrial fibrillation and sinus node dysfunction in human ankyrin-B syndrome: a computational analysis.
Am J Physiol Heart Circ Physiol. 2013 May;304(9):H1253-66. doi: 10.1152/ajpheart.00734.2012. Epub 2013 Feb 22.
2
Mechanisms of human atrial fibrillation initiation: clinical and computational studies of repolarization restitution and activation latency.
Circ Arrhythm Electrophysiol. 2012 Dec;5(6):1149-59. doi: 10.1161/CIRCEP.111.969022. Epub 2012 Oct 1.
3
Methodology for patient-specific modeling of atrial fibrosis as a substrate for atrial fibrillation.
J Electrocardiol. 2012 Nov-Dec;45(6):640-5. doi: 10.1016/j.jelectrocard.2012.08.005. Epub 2012 Sep 19.
4
Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation.
Circulation. 2012 Oct 23;126(17):2051-64. doi: 10.1161/CIRCULATIONAHA.112.121830. Epub 2012 Sep 19.
6
Effects of electrical and structural remodeling on atrial fibrillation maintenance: a simulation study.
PLoS Comput Biol. 2012;8(2):e1002390. doi: 10.1371/journal.pcbi.1002390. Epub 2012 Feb 23.
7
Reduced Cx43 expression triggers increased fibrosis due to enhanced fibroblast activity.
Circ Arrhythm Electrophysiol. 2012 Apr;5(2):380-90. doi: 10.1161/CIRCEP.111.966580. Epub 2012 Feb 24.
9
Image-based estimation of ventricular fiber orientations for personalized modeling of cardiac electrophysiology.
IEEE Trans Med Imaging. 2012 May;31(5):1051-60. doi: 10.1109/TMI.2012.2184799. Epub 2012 Jan 18.
10
A finite element approach for modeling micro-structural discontinuities in the heart.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:437-40. doi: 10.1109/IEMBS.2011.6090059.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验