The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA.
Am J Physiol Heart Circ Physiol. 2013 May;304(9):H1253-66. doi: 10.1152/ajpheart.00734.2012. Epub 2013 Feb 22.
Ankyrin-B is a multifunctional adapter protein responsible for localization and stabilization of select ion channels, transporters, and signaling molecules in excitable cells including cardiomyocytes. Ankyrin-B dysfunction has been linked with highly penetrant sinoatrial node (SAN) dysfunction and increased susceptibility to atrial fibrillation. While previous studies have identified a role for abnormal ion homeostasis in ventricular arrhythmias, the molecular mechanisms responsible for atrial arrhythmias and SAN dysfunction in human patients with ankyrin-B syndrome are unclear. Here, we develop a computational model of ankyrin-B dysfunction in atrial and SAN cells and tissue to determine the mechanism for increased susceptibility to atrial fibrillation and SAN dysfunction in human patients with ankyrin-B syndrome. Our simulations predict that defective membrane targeting of the voltage-gated L-type Ca(2+) channel Cav1.3 leads to action potential shortening that reduces the critical atrial tissue mass needed to sustain reentrant activation. In parallel, increased fibrosis results in conduction slowing that further increases the susceptibility to sustained reentry in the setting of ankyrin-B dysfunction. In SAN cells, loss of Cav1.3 slows spontaneous pacemaking activity, whereas defects in Na(+)/Ca(2+) exchanger and Na(+)/K(+) ATPase increase variability in SAN cell firing. Finally, simulations of the intact SAN reveal a shift in primary pacemaker site, SAN exit block, and even SAN failure in ankyrin-B-deficient tissue. These studies identify the mechanism for increased susceptibility to atrial fibrillation and SAN dysfunction in human disease. Importantly, ankyrin-B dysfunction involves changes at both the cell and tissue levels that favor the common manifestation of atrial arrhythmias and SAN dysfunction.
锚蛋白-B 是一种多功能衔接蛋白,负责将特定的离子通道、转运体和信号分子定位和稳定在包括心肌细胞在内的可兴奋细胞中。锚蛋白-B 功能障碍与高度穿透性窦房结 (SAN) 功能障碍和心房颤动易感性增加有关。虽然先前的研究已经确定了异常离子稳态在室性心律失常中的作用,但导致人类锚蛋白-B 综合征患者心房性心律失常和 SAN 功能障碍的分子机制尚不清楚。在这里,我们开发了一种心房和 SAN 细胞和组织中锚蛋白-B 功能障碍的计算模型,以确定人类锚蛋白-B 综合征患者中增加心房颤动易感性和 SAN 功能障碍的机制。我们的模拟预测,电压门控 L 型 Ca(2+) 通道 Cav1.3 的膜靶向缺陷导致动作电位缩短,从而减少维持折返激活所需的临界心房组织质量。同时,纤维化增加导致传导减慢,这进一步增加了锚蛋白-B 功能障碍时持续折返的易感性。在 SAN 细胞中,Cav1.3 的缺失会减缓自发性起搏活动,而 Na(+)/Ca(2+) 交换体和 Na(+)/K(+) ATP 酶的缺陷会增加 SAN 细胞放电的变异性。最后,对完整 SAN 的模拟显示,在锚蛋白-B 缺陷组织中,主要起搏部位发生转移、SAN 出口阻滞,甚至 SAN 衰竭。这些研究确定了人类疾病中增加心房颤动易感性和 SAN 功能障碍的机制。重要的是,锚蛋白-B 功能障碍涉及细胞和组织水平的变化,有利于心房性心律失常和 SAN 功能障碍的共同表现。