Auckland Bioengineering Institute, The University of Auckland, New Zealand.
Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH.
J Am Heart Assoc. 2017 Aug 22;6(8):e005922. doi: 10.1161/JAHA.117.005922.
Structural remodeling of human atria plays a key role in sustaining atrial fibrillation (AF), but insufficient quantitative analysis of human atrial structure impedes the treatment of AF. We aimed to develop a novel 3-dimensional (3D) structural and computational simulation analysis tool that could reveal the structural contributors to human reentrant AF drivers.
High-resolution panoramic epicardial optical mapping of the coronary-perfused explanted intact human atria (63-year-old woman, chronic hypertension, heart weight 608 g) was conducted during sinus rhythm and sustained AF maintained by spatially stable reentrant AF drivers in the left and right atrium. The whole atria (107×61×85 mm) were then imaged with contrast-enhancement MRI (9.4 T, 180×180×360-μm resolution). The entire 3D human atria were analyzed for wall thickness (0.4-11.7 mm), myofiber orientations, and transmural fibrosis (36.9% subendocardium; 14.2% midwall; 3.4% subepicardium). The 3D computational analysis revealed that a specific combination of wall thickness and fibrosis ranges were primarily present in the optically defined AF driver regions versus nondriver tissue. Finally, a 3D human heart-specific atrial computer model was developed by integrating 3D structural and functional mapping data to test AF induction, maintenance, and ablation strategies. This 3D model reproduced the optically defined reentrant AF drivers, which were uninducible when fibrosis and myofiber anisotropy were removed from the model.
Our novel 3D computational high-resolution framework may be used to quantitatively analyze structural substrates, such as wall thickness, myofiber orientation, and fibrosis, underlying localized AF drivers, and aid the development of new patient-specific treatments.
人类心房的结构重塑在维持心房颤动(AF)中起着关键作用,但对人类心房结构的定量分析不足阻碍了 AF 的治疗。我们旨在开发一种新的 3 维(3D)结构和计算模拟分析工具,以揭示人类折返性 AF 驱动因素的结构贡献。
在窦性节律和由左、右心房稳定折返性 AF 驱动因素维持的持续性 AF 期间,对经冠状灌注的离体完整人类心房(63 岁女性,慢性高血压,心脏重量 608g)进行高分辨率全景心外膜光学标测。然后用对比增强 MRI(9.4T,180×180×360-μm 分辨率)对整个心房进行成像。对整个 3D 人类心房的壁厚度(0.4-11.7mm)、肌纤维方向和透壁纤维化(36.9%心内膜下;14.2%中壁;3.4%心外膜下)进行分析。3D 计算分析表明,在光学定义的 AF 驱动区与非驱动组织中,存在特定的壁厚度和纤维化范围组合。最后,通过整合 3D 结构和功能映射数据,开发了一种 3D 人心脏特异性心房计算机模型,以测试 AF 诱导、维持和消融策略。该 3D 模型再现了光学定义的折返性 AF 驱动因素,当从模型中去除纤维化和肌纤维各向异性时,这些驱动因素无法诱导。
我们的新型 3D 计算高分辨率框架可用于定量分析结构底物,如壁厚度、肌纤维方向和纤维化,以了解局部 AF 驱动因素,并有助于开发新的患者特异性治疗方法。