Suppr超能文献

一种用于具有相依删失的当前状态数据非参数估计的临近池违规者类型算法。

A pool-adjacent-violators type algorithm for non-parametric estimation of current status data with dependent censoring.

作者信息

Titman Andrew C

机构信息

Department of Mathematics and Statistics, Lancaster University, Lancaster, LA1 4YF, UK,

出版信息

Lifetime Data Anal. 2014 Jul;20(3):444-58. doi: 10.1007/s10985-013-9274-4. Epub 2013 Jun 22.

Abstract

A likelihood based approach to obtaining non-parametric estimates of the failure time distribution is developed for the copula based model of Wang et al. (Lifetime Data Anal 18:434-445, 2012) for current status data under dependent observation. Maximization of the likelihood involves a generalized pool-adjacent violators algorithm. The estimator coincides with the standard non-parametric maximum likelihood estimate under an independence model. Confidence intervals for the estimator are constructed based on a smoothed bootstrap. It is also shown that the non-parametric failure distribution is only identifiable if the copula linking the observation and failure time distributions is fully-specified. The method is illustrated on a previously analyzed tumorigenicity dataset.

摘要

针对Wang等人(《寿命数据分析》,2012年,第18卷:434 - 445页)基于copula的当前状态数据相关观测模型,开发了一种用于获得失效时间分布非参数估计的似然方法。似然最大化涉及一种广义池相邻违规者算法。在独立模型下,该估计器与标准非参数最大似然估计一致。基于平滑自助法构建估计器的置信区间。还表明,只有当连接观测和失效时间分布的copula被完全指定时,非参数失效分布才是可识别的。该方法在之前分析过的致瘤性数据集上进行了说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验