College of Science, Jiangxi University of Science and Technology, Ganzhou, China.
Teaching Department of Basic Subjects, Jiangxi University of Science and Technology, Nanchang, China.
PLoS One. 2024 Sep 30;19(9):e0311129. doi: 10.1371/journal.pone.0311129. eCollection 2024.
This article explores the estimation of Shannon entropy and Rényi entropy based on the generalized inverse exponential distribution under the condition of stepwise Type II truncated samples. Firstly, we analyze the maximum likelihood estimation and interval estimation of Shannon entropy and Rényi entropy for the generalized inverse exponential distribution. In this process, we use the bootstrap method to construct confidence intervals for Shannon entropy and Rényi entropy. Next, we select the gamma distribution as the prior distribution and apply the Lindley approximation algorithm to calculate `estimates of Shannon entropy and Rényi entropy under different loss functions including Linex loss function, entropy loss function, and DeGroot loss function respectively. Afterwards, simulation is used to calculate estimates and corresponding mean square errors of Shannon entropy and Rényi entropy in GIED model. The research results show that under DeGroot loss function, estimation accuracy of Shannon entropy and Rényi entropy for generalized inverse exponential distribution is relatively high, overall Bayesian estimation performs better than maximum likelihood estimation. Finally, we demonstrate effectiveness of our estimation method in practical applications using a set of real data.
本文探讨了在逐步型 II 截断样本条件下,广义逆指数分布的 Shannon 熵和 Renyi 熵的估计。首先,我们分析了广义逆指数分布的 Shannon 熵和 Renyi 熵的最大似然估计和区间估计。在此过程中,我们使用自举法来构建 Shannon 熵和 Renyi 熵的置信区间。接下来,我们选择伽马分布作为先验分布,并应用林德利近似算法分别计算不同损失函数下(包括 Linx 损失函数、熵损失函数和 DeGroot 损失函数)的 Shannon 熵和 Renyi 熵的估计值。然后,通过模拟计算 GIED 模型中 Shannon 熵和 Renyi 熵的估计值及其相应的均方误差。研究结果表明,在 DeGroot 损失函数下,广义逆指数分布的 Shannon 熵和 Renyi 熵的估计精度较高,总体而言,贝叶斯估计优于最大似然估计。最后,我们使用一组实际数据来演示我们的估计方法在实际应用中的有效性。