Luo Lin, Yu Jinzhao, Zhao Hui
College of Science, Zhongyuan University of Technology, Zhengzhou, People's Republic of China.
School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, People's Republic of China.
J Appl Stat. 2022 Dec 29;51(4):759-779. doi: 10.1080/02664763.2022.2161488. eCollection 2024.
In this paper, we study the sparse estimation under the semiparametric linear transformation models for the current status data, also called type I interval-censored data. For the problem, the failure time of interest may be dependent on the censoring time and the association parameter between them is left unspecified. To address this, we employ the copula model to describe the dependence between them and a two-stage estimation procedure to estimate both the association parameter and the regression parameter. In addition, we propose a penalized maximum likelihood estimation procedure based on the broken adaptive ridge regression, and Bernstein polynomials are used to approximate the nonparametric functions involved. The oracle property of the proposed method is established and the numerical studies suggest that the method works well for practical situations. Finally, the method is applied to an Alzheimer's disease study that motivated this investigation.
在本文中,我们研究了当前状态数据(也称为I型区间删失数据)的半参数线性变换模型下的稀疏估计。对于该问题,感兴趣的失效时间可能依赖于删失时间,且它们之间的关联参数未明确指定。为解决此问题,我们采用copula模型来描述它们之间的依赖关系,并使用两阶段估计程序来估计关联参数和回归参数。此外,我们提出了一种基于折断自适应岭回归的惩罚最大似然估计程序,并使用伯恩斯坦多项式来逼近所涉及的非参数函数。建立了所提方法的神谕性质,数值研究表明该方法在实际情况中效果良好。最后,该方法被应用于一项激发本研究的阿尔茨海默病研究。