Suppr超能文献

具有相依当前状态数据的半参数线性变换模型的稀疏估计

The sparse estimation of the semiparametric linear transformation model with dependent current status data.

作者信息

Luo Lin, Yu Jinzhao, Zhao Hui

机构信息

College of Science, Zhongyuan University of Technology, Zhengzhou, People's Republic of China.

School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, People's Republic of China.

出版信息

J Appl Stat. 2022 Dec 29;51(4):759-779. doi: 10.1080/02664763.2022.2161488. eCollection 2024.

Abstract

In this paper, we study the sparse estimation under the semiparametric linear transformation models for the current status data, also called type I interval-censored data. For the problem, the failure time of interest may be dependent on the censoring time and the association parameter between them is left unspecified. To address this, we employ the copula model to describe the dependence between them and a two-stage estimation procedure to estimate both the association parameter and the regression parameter. In addition, we propose a penalized maximum likelihood estimation procedure based on the broken adaptive ridge regression, and Bernstein polynomials are used to approximate the nonparametric functions involved. The oracle property of the proposed method is established and the numerical studies suggest that the method works well for practical situations. Finally, the method is applied to an Alzheimer's disease study that motivated this investigation.

摘要

在本文中,我们研究了当前状态数据(也称为I型区间删失数据)的半参数线性变换模型下的稀疏估计。对于该问题,感兴趣的失效时间可能依赖于删失时间,且它们之间的关联参数未明确指定。为解决此问题,我们采用copula模型来描述它们之间的依赖关系,并使用两阶段估计程序来估计关联参数和回归参数。此外,我们提出了一种基于折断自适应岭回归的惩罚最大似然估计程序,并使用伯恩斯坦多项式来逼近所涉及的非参数函数。建立了所提方法的神谕性质,数值研究表明该方法在实际情况中效果良好。最后,该方法被应用于一项激发本研究的阿尔茨海默病研究。

相似文献

本文引用的文献

4
Broken adaptive ridge regression and its asymptotic properties.折断自适应岭回归及其渐近性质。
J Multivar Anal. 2018 Nov;168:334-351. doi: 10.1016/j.jmva.2018.08.007. Epub 2018 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验