Kim Mijeong, Ma Yanyuan
Department of Statistics, Texas A&M University, College Station, TX 77843, USA.
Ann Inst Stat Math. 2012 Aug;64(4):751-764. doi: 10.1007/s10463-011-0332-y.
We revisit the second-order nonlinear least square estimator proposed in Wang and Leblanc (Anne Inst Stat Math 60:883-900, 2008) and show that the estimator reaches the asymptotic optimality concerning the estimation variability. Using a fully semiparametric approach, we further modify and extend the method to the heteroscedastic error models and propose a semiparametric efficient estimator in this more general setting. Numerical results are provided to support the results and illustrate the finite sample performance of the proposed estimator.
我们重新审视了Wang和Leblanc(《统计数学研究所年报》60:883 - 900,2008)中提出的二阶非线性最小二乘估计量,并表明该估计量在估计变异性方面达到了渐近最优性。使用完全半参数方法,我们进一步将该方法修改并扩展到异方差误差模型,并在这个更一般的设定中提出了一个半参数有效估计量。提供了数值结果以支持这些结果,并说明所提出估计量的有限样本性能。