Xue Hongqi, Miao Hongyu, Wu Hulin
Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 630, Rochester, New York 14642, USA.
Ann Stat. 2010 Jan 1;38(4):2351-2387. doi: 10.1214/09-aos784.
This article considers estimation of constant and time-varying coefficients in nonlinear ordinary differential equation (ODE) models where analytic closed-form solutions are not available. The numerical solution-based nonlinear least squares (NLS) estimator is investigated in this study. A numerical algorithm such as the Runge-Kutta method is used to approximate the ODE solution. The asymptotic properties are established for the proposed estimators considering both numerical error and measurement error. The B-spline is used to approximate the time-varying coefficients, and the corresponding asymptotic theories in this case are investigated under the framework of the sieve approach. Our results show that if the maximum step size of the p-order numerical algorithm goes to zero at a rate faster than n(-1/(p∧4)), the numerical error is negligible compared to the measurement error. This result provides a theoretical guidance in selection of the step size for numerical evaluations of ODEs. Moreover, we have shown that the numerical solution-based NLS estimator and the sieve NLS estimator are strongly consistent. The sieve estimator of constant parameters is asymptotically normal with the same asymptotic co-variance as that of the case where the true ODE solution is exactly known, while the estimator of the time-varying parameter has the optimal convergence rate under some regularity conditions. The theoretical results are also developed for the case when the step size of the ODE numerical solver does not go to zero fast enough or the numerical error is comparable to the measurement error. We illustrate our approach with both simulation studies and clinical data on HIV viral dynamics.
本文考虑在没有解析闭式解的非线性常微分方程(ODE)模型中估计常数系数和时变系数。本研究对基于数值解的非线性最小二乘(NLS)估计器进行了研究。使用如龙格 - 库塔方法这样的数值算法来近似ODE解。考虑数值误差和测量误差,为所提出的估计器建立了渐近性质。使用B样条来近似时变系数,并在筛法框架下研究了这种情况下相应的渐近理论。我们的结果表明,如果p阶数值算法的最大步长以比n^(-1/(p∧4))更快的速率趋于零,与测量误差相比,数值误差可忽略不计。这一结果为ODE数值评估中步长的选择提供了理论指导。此外,我们已经表明基于数值解的NLS估计器和筛法NLS估计器是强一致的。常数参数的筛法估计器渐近正态,其渐近协方差与真实ODE解完全已知的情况相同,而时变参数的估计器在一些正则条件下具有最优收敛速率。对于ODE数值求解器的步长不够快地趋于零或数值误差与测量误差相当的情况,也推导了理论结果。我们通过关于HIV病毒动力学的模拟研究和临床数据来说明我们的方法。