Li Mengyan, Ma Yanyuan, Li Runze
Department of Statistics, Pennsylvania State University, University Park, PA 16802-2111, USA.
J Multivar Anal. 2019 May;171:320-338. doi: 10.1016/j.jmva.2018.12.012. Epub 2019 Jan 8.
Covariate measurement error is a common problem. Improper treatment of measurement errors may affect the quality of estimation and the accuracy of inference. Extensive literature exists on homoscedastic measurement error models, but little research exists on heteroscedastic measurement. In this paper, we consider a general parametric regression model allowing for a covariate measured with heteroscedastic error. We allow both the variance function of the measurement errors and the conditional density function of the error-prone covariate given the error-free covariates to be completely unspecified. We treat the variance function using B-spline approximation and propose a semiparametric estimator based on efficient score functions to deal with the heteroscedasticity of the measurement error. The resulting estimator is consistent and enjoys good inference properties. Its finite-sample performance is demonstrated through simulation studies and a real data example.
协变量测量误差是一个常见问题。对测量误差处理不当可能会影响估计质量和推断准确性。关于同方差测量误差模型有大量文献,但关于异方差测量的研究较少。在本文中,我们考虑一个一般的参数回归模型,该模型允许协变量存在异方差误差。我们允许测量误差的方差函数以及给定无误差协变量时易出错协变量的条件密度函数完全未指定。我们使用B样条近似处理方差函数,并基于有效得分函数提出一种半参数估计器来处理测量误差的异方差性。所得估计器是一致的,并且具有良好的推断性质。通过模拟研究和一个实际数据示例展示了其有限样本性能。