Gilead and IOCB Research Center Prague, Flemingovo nám. 2, 16610 Prague 6, Czech Republic.
Faraday Discuss. 2013;160:359-70; discussion 389-403. doi: 10.1039/c2fd20094e.
Human immunodeficiency virus 1 protease (HIV-1 PR), an important therapeutic target for the treatment of AIDS, is one of the most well-studied enzymes. However, there is still much to learn about the regulation of the activity and inhibition of this key viral enzyme. Specifically, the mechanism of activation of HIV-1 PR from the viral polyprotein upon HIV maturation is still not understood. It has been suggested that external factors like pH or salt concentration might contribute to regulation of this crucial step in the viral life cycle. Recently, we analyzed the activity of HIV-1 PR in aqueous solutions of sodium and potassium chloride by experimental determination of enzyme kinetics and molecular dynamics simulations. We showed that the effect of salt concentration is cation-specific [Heyda et al., Phys. Chem. Chem. Phys., 2009 (11), 7599]. In this study, we extended this analysis for other alkali cations and found that the dependence of the initial velocity of peptide substrate hydrolysis on the nature of the cation follows the Hofmeister series, with the exception of caesium. Significantly higher catalytic efficiencies both in terms of substrate binding (K(M)) and turnover number (kcat) are observed in the presence of K+ compared to Na+ or Li+ at corresponding salt concentrations. Molecular dynamics simulations suggest that both lithium and sodium are attracted more strongly than potassium and caesium to the protein surface, mostly due to stronger interactions with carboxylate side chain groups of aspartates and glutamates. Furthermore, we observed a surprising decrease in the K(M) value for a specific substrate at very low salt concentration. The molecular mechanism of this phenomenon will be further analyzed.
人类免疫缺陷病毒 1 蛋白酶(HIV-1 PR)是治疗艾滋病的重要治疗靶点,也是研究最深入的酶之一。然而,对于这种关键病毒酶的活性和抑制的调节,仍有许多需要了解的地方。具体来说,HIV 成熟过程中病毒多蛋白对 HIV-1 PR 的激活机制仍不清楚。有人认为,pH 值或盐浓度等外部因素可能有助于调节病毒生命周期中的这一关键步骤。最近,我们通过实验测定酶动力学和分子动力学模拟分析了 HIV-1 PR 在氯化钠和氯化钾水溶液中的活性。我们表明,盐浓度的影响是阳离子特异性的[Heyda 等人,物理化学化学物理,2009(11),7599]。在这项研究中,我们将这种分析扩展到其他碱金属阳离子,并发现肽底物水解初始速度对阳离子性质的依赖性遵循豪夫迈斯特序列,但铯除外。与相应盐浓度下的钠离子或锂离子相比,钾离子存在时,无论是在底物结合(K(M))还是周转率(kcat)方面,催化效率都显著提高。分子动力学模拟表明,锂和钠比钾和铯更强烈地被吸引到蛋白质表面,主要是由于与天冬氨酸和谷氨酸的羧酸盐侧链基团的相互作用更强。此外,我们观察到在非常低的盐浓度下,特定底物的 K(M)值出人意料地降低。这种现象的分子机制将进一步分析。