Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California.
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California.
Biophys J. 2018 May 8;114(9):2174-2179. doi: 10.1016/j.bpj.2018.02.008.
Molecular motors are thought to generate force and directional motion via nonequilibrium switching between energy surfaces. Because all enzymes can undergo such switching, we hypothesized that the ability to generate rotary motion and torque is not unique to highly adapted biological motor proteins but is instead a common feature of enzymes. We used molecular dynamics simulations to compute energy surfaces for hundreds of torsions in three enzymes-adenosine kinase, protein kinase A, and HIV-1 protease-and used these energy surfaces within a kinetic model that accounts for intersurface switching and intrasurface probability flows. When substrate is out of equilibrium with product, we find computed torsion rotation rates up ∼140 cycles s, with stall torques up to ∼2 kcal mol cycle, and power outputs up to ∼50 kcal mol s. We argue that these enzymes are instances of a general phenomenon of directional probability flows on asymmetric energy surfaces for systems out of equilibrium. Thus, we conjecture that cyclic probability fluxes, corresponding to rotations of torsions and higher-order collective variables, exist in any chiral molecule driven between states in a nonequilibrium manner; we call this the "Asymmetry-Directionality" conjecture. This is expected to apply as well to synthetic chiral molecules switched in a nonequilibrium manner between energy surfaces by light, redox chemistry, or catalysis.
分子马达被认为通过在能量表面之间的非平衡切换来产生力和定向运动。由于所有的酶都可以进行这种切换,我们假设产生旋转运动和扭矩的能力不是高度适应的生物马达蛋白所特有的,而是酶的共同特征。我们使用分子动力学模拟计算了三种酶(腺苷激酶、蛋白激酶 A 和 HIV-1 蛋白酶)中数百个扭转的能量表面,并在一个考虑表面间切换和表面内概率流的动力学模型中使用了这些能量表面。当底物与产物不平衡时,我们发现计算出的扭转旋转速率高达约 140 个循环 s,停滞扭矩高达约 2 kcal mol 循环,功率输出高达约 50 kcal mol s。我们认为这些酶是系统在非平衡状态下不对称能量表面上定向概率流的一般现象的实例。因此,我们推测,在任何手性分子中,当以非平衡方式在状态之间驱动时,都会存在对应于扭转和更高阶集体变量旋转的循环概率通量;我们称之为“不对称-定向”假说。这预计也适用于通过光、氧化还原化学或催化在非平衡方式下在能量表面之间切换的合成手性分子。