Park Min Tae M, Pipitone Jon, Baer Lawrence H, Winterburn Julie L, Shah Yashvi, Chavez Sofia, Schira Mark M, Lobaugh Nancy J, Lerch Jason P, Voineskos Aristotle N, Chakravarty M Mallar
Kimel Family Translational Imaging Genetics Research Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada.
Kimel Family Translational Imaging Genetics Research Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada.
Neuroimage. 2014 Jul 15;95:217-31. doi: 10.1016/j.neuroimage.2014.03.037. Epub 2014 Mar 21.
The cerebellum has classically been linked to motor learning and coordination. However, there is renewed interest in the role of the cerebellum in non-motor functions such as cognition and in the context of different neuropsychiatric disorders. The contribution of neuroimaging studies to advancing understanding of cerebellar structure and function has been limited, partly due to the cerebellum being understudied as a result of contrast and resolution limitations of standard structural magnetic resonance images (MRI). These limitations inhibit proper visualization of the highly compact and detailed cerebellar foliations. In addition, there is a lack of robust algorithms that automatically and reliably identify the cerebellum and its subregions, further complicating the design of large-scale studies of the cerebellum. As such, automated segmentation of the cerebellar lobules would allow detailed population studies of the cerebellum and its subregions. In this manuscript, we describe a novel set of high-resolution in vivo atlases of the cerebellum developed by pairing MR imaging with a carefully validated manual segmentation protocol. Using these cerebellar atlases as inputs, we validate a novel automated segmentation algorithm that takes advantage of the neuroanatomical variability that exists in a given population under study in order to automatically identify the cerebellum, and its lobules. Our automatic segmentation results demonstrate good accuracy in the identification of all lobules (mean Kappa [κ]=0.731; range 0.40-0.89), and the entire cerebellum (mean κ=0.925; range 0.90-0.94) when compared to "gold-standard" manual segmentations. These results compare favorably in comparison to other publically available methods for automatic segmentation of the cerebellum. The completed cerebellar atlases are available freely online (http://imaging-genetics.camh.ca/cerebellum) and can be customized to the unique neuroanatomy of different subjects using the proposed segmentation pipeline (https://github.com/pipitone/MAGeTbrain).
传统上,小脑一直与运动学习和协调相关联。然而,人们对小脑在认知等非运动功能以及不同神经精神疾病背景下的作用重新产生了兴趣。神经影像学研究对推进小脑结构和功能理解的贡献有限,部分原因是由于标准结构磁共振成像(MRI)的对比度和分辨率限制,小脑一直未得到充分研究。这些限制妨碍了对高度紧凑且细节丰富的小脑叶的正确可视化。此外,缺乏能够自动且可靠地识别小脑及其亚区域的强大算法,这使得小脑大规模研究的设计更加复杂。因此,小脑小叶的自动分割将有助于对小脑及其亚区域进行详细的群体研究。在本论文中,我们描述了一组通过将磁共振成像与经过精心验证的手动分割协议相结合而开发的新型高分辨率小脑活体图谱。以这些小脑图谱为输入,我们验证了一种新型自动分割算法,该算法利用所研究特定群体中存在的神经解剖学变异性来自动识别小脑及其小叶。与“金标准”手动分割相比,我们的自动分割结果在识别所有小叶(平均卡帕[κ]=0.731;范围0.40 - 0.89)和整个小脑(平均κ=0.925;范围0.90 - 0.94)方面显示出良好的准确性。与其他公开可用的小脑自动分割方法相比,这些结果更具优势。完整的小脑图谱可在网上免费获取(http://imaging-genetics.camh.ca/cerebellum),并且可以使用所提出的分割管道(https://github.com/pipitone/MAGeTbrain)根据不同受试者的独特神经解剖结构进行定制。