Suppr超能文献

采用多通道边缘加权质心 Voronoi 细分算法进行 3D 超合金晶粒分割。

3D superalloy grain segmentation using a multichannel edge-weighted centroidal Voronoi tessellation algorithm.

机构信息

Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA.

出版信息

IEEE Trans Image Process. 2013 Oct;22(10):4123-35. doi: 10.1109/TIP.2013.2270113. Epub 2013 Jun 19.

Abstract

Accurate grain segmentation on 3D superalloy images is very important in materials science and engineering. From grain segmentation, we can derive the underlying superalloy grains' micro-structures, based on how many important physical, mechanical, and chemical properties of the superalloy samples can be evaluated. Grain segmentation is, however, usually a very challenging problem because: 1) even a small 3D superalloy sample may contain hundreds of grains; 2) carbides and noises may degrade the imaging quality; and 3) the intensity within a grain may not be homogeneous. In addition, the same grain may present different appearances, e.g., different intensities, under different microscope settings. In practice, a 3D superalloy image may contain multichannel information where each channel corresponds to a specific microscope setting. In this paper, we develop a multichannel edge-weighted centroidal Voronoi tessellation (MCEWCVT) algorithm to effectively and robustly segment the superalloy grains from 3D multichannel superalloy images. MCEWCVT performs segmentation by minimizing an energy function, which encodes both the multichannel voxel-intensity similarity within each cluster in the intensity domain and the smoothness of segmentation boundaries in the 3D image domain. In the experiment, we first quantitatively evaluate the proposed MCEWCVT algorithm on a four-channel Ni-based 3D superalloy data set (IN100) against the manually annotated ground-truth segmentation. We further evaluate the MCEWCVT algorithm on two synthesized four-channel superalloy data sets. The qualitative and quantitative comparisons of 18 existing image segmentation algorithms demonstrate the effectiveness and robustness of the proposed MCEWCVT algorithm.

摘要

准确的 3D 高温合金图像分割在材料科学和工程中非常重要。通过晶粒分割,我们可以推导出基础高温合金晶粒的微观结构,因为可以评估多少重要的物理,机械和化学性能的高温合金样本。然而,晶粒分割通常是一个非常具有挑战性的问题,因为:1)即使是一个小的 3D 高温合金样品可能包含数百个晶粒;2)碳化物和噪声可能会降低成像质量;3)晶粒内的强度可能不均匀。此外,同一晶粒在不同的显微镜设置下可能会呈现不同的外观,例如不同的强度。在实践中,3D 高温合金图像可能包含多通道信息,每个通道对应于特定的显微镜设置。在本文中,我们开发了一种多通道边缘加权质心 Voronoi 细分(MCEWCVT)算法,以有效地和鲁棒地从 3D 多通道高温合金图像中分割高温合金晶粒。MCEWCVT 通过最小化能量函数来执行分割,该函数编码了每个簇内的多通道体素强度相似性和 3D 图像域中分割边界的平滑度。在实验中,我们首先在一个四通道 Ni 基 3D 高温合金数据集(IN100)上定量评估了所提出的 MCEWCVT 算法与手动注释的地面真实分割的对比。我们进一步在两个合成的四通道高温合金数据集上评估了 MCEWCVT 算法。18 种现有图像分割算法的定性和定量比较证明了所提出的 MCEWCVT 算法的有效性和鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验