Suppr超能文献

预测非本土世界中的新型营养相互作用。

Predicting novel trophic interactions in a non-native world.

机构信息

Laboratory of Ornithology, Cornell University, Ithaca, NY, USA.

出版信息

Ecol Lett. 2013 Aug;16(8):1088-94. doi: 10.1111/ele.12143. Epub 2013 Jun 26.

Abstract

Humans are altering the global distributional ranges of plants, while their co-evolved herbivores are frequently left behind. Native herbivores often colonise non-native plants, potentially reducing invasion success or causing economic loss to introduced agricultural crops. We developed a predictive model to forecast novel interactions and verified it with a data set containing hundreds of observed novel plant-insect interactions. Using a food network of 900 native European butterfly and moth species and 1944 native plants, we built an herbivore host-use model. By extrapolating host use from the native herbivore-plant food network, we accurately forecasted the observed novel use of 459 non-native plant species by native herbivores. Patterns that governed herbivore host breadth on co-evolved native plants were equally important in determining non-native hosts. Our results make the forecasting of novel herbivore communities feasible in order to better understand the fate and impact of introduced plants.

摘要

人类正在改变植物的全球分布范围,而与其共同进化的食草动物常常被抛在后面。本地食草动物经常会在非本地植物上定殖,这可能会降低入侵的成功率,或给引入的农业作物造成经济损失。我们开发了一种预测模型来预测新的相互作用,并使用包含数百种已观察到的新的植物-昆虫相互作用的数据集对其进行了验证。利用一个包含 900 种欧洲本地蝴蝶和飞蛾物种以及 1944 种本地植物的食物网络,我们构建了一个食草动物的寄主使用模型。通过从本地食草动物-植物食物网络中推断寄主的使用情况,我们准确地预测了 459 种非本地植物物种被本地食草动物的观察到的新利用情况。在决定非本地寄主时,控制本地进化植物上食草动物寄主广度的模式同样重要。我们的研究结果使得对新的食草动物群落的预测成为可能,以便更好地了解引入植物的命运和影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验