Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
AMB Express. 2013 Jun 24;3:34. doi: 10.1186/2191-0855-3-34. eCollection 2013.
Efficient degradation of cellulosic biomass requires the synergistic action of the cellulolytic enzymes endoglucanase, cellobiohydrolase, and β-glucosidase. Although there are many reports describing consolidation of hydrolysis and fermentation steps using recombinant Saccharomyces cerevisiae that express cellulolytic enzymes, the efficiency of cellulose degradation has not been sufficiently improved. Although the yeast S. cerevisiae cannot take up cellooligosaccharide, some fungi can take up and assimilate cellooligosaccharide through a cellodextrin transporter. In this study, a S. cerevisiae strain co-expressing genes for several cell surface display cellulases and the cellodextrin transporter was constructed for the purpose of improving the efficiency of direct ethanol fermentation from phosphoric acid swollen cellulose (PASC). The cellulase/cellodextrin transporter-coexpressing strain produced 1.7-fold more ethanol (4.3 g/L) from PASC during a 72-h fermentation than did a strain expressing cellulase only (2.5 g/L). Direct ethanol production from PASC by the recombinant S. cerevisiae strain was improved by co-expression of cellulase display and cellodextrin transporter genes. These results suggest that cellulase- and cellodextrin transporter-co-expressing S. cerevisiae could be a promising technology for efficient direct ethanol production from cellulose.
高效降解纤维素生物质需要内切葡聚糖酶、纤维二糖水解酶和β-葡萄糖苷酶等纤维素酶的协同作用。尽管有许多报道描述了利用表达纤维素酶的重组酿酒酵母整合水解和发酵步骤,但纤维素的降解效率并没有得到充分提高。尽管酵母酿酒酵母不能摄取纤维寡糖,但一些真菌可以通过纤维二糖转运蛋白摄取和同化纤维寡糖。在这项研究中,构建了一株共表达几种细胞表面展示纤维素酶和纤维二糖转运蛋白的酿酒酵母菌株,旨在提高磷酸膨胀纤维素(PASC)直接乙醇发酵的效率。与仅表达纤维素酶的菌株(2.5 g/L)相比,共表达纤维素酶/纤维二糖转运蛋白的菌株在 72 小时发酵过程中从 PASC 中产生了 1.7 倍的乙醇(4.3 g/L)。通过共表达纤维素酶展示和纤维二糖转运蛋白基因,提高了重组酿酒酵母菌株对 PASC 的直接乙醇生产。这些结果表明,共表达纤维素酶和纤维二糖转运蛋白的酿酒酵母可以成为从纤维素高效生产直接乙醇的有前途的技术。