Aggarwal Shivam, Dorairaj Sathish, Adlakha Nidhi
Synthetic Biology and Bioprocessing Group, Regional Centre for Biotechnology, NCR-Biotech Cluster, Faridabad, India.
Biotechnol Biofuels Bioprod. 2023 Mar 16;16(1):48. doi: 10.1186/s13068-023-02296-1.
The exact mechanism by which fungal strains sense insoluble cellulose is unknown, but research points to the importance of transglycosylation products generated by fungi during cellulose breakdown. Here, we used multi-omics approach to identify the transglycosylation metabolites and determine their function in cellulase induction in a model strain, Talaromyces cellulolyticus MTCC25456.
Talaromyces sp. is a novel hypercellulolytic fungal strain. Based on genome scrutiny and biochemical analysis, we predicted the presence of cellulases on the surface of its spores. We performed metabolome analysis to show that these membrane-bound cellulases act on polysaccharides to form a mixture of disaccharides and their transglycosylated derivatives. Inevitably, a high correlation existed between metabolite data and the KEGG enrichment analysis of differentially expressed genes in the carbohydrate metabolic pathway. Analysis of the contribution of the transglycosylation product mixtures to cellulase induction revealed a 57% increase in total cellulase. Further research into the metabolites, using in vitro induction tests and response surface methodology, revealed that Talaromyces sp. produces cell wall-breaking enzymes in response to cellobiose and gentiobiose as a stimulant. Precisely, a 2.5:1 stoichiometric ratio of cellobiose to gentiobiose led to a 2.4-fold increase in cellulase synthesis. The application of the optimized inducers in cre knockout strain significantly increased the enzyme output.
This is the first study on the objective evaluation and enhancement of cellulase production using optimized inducers. Inducer identification and genetic engineering boosted the cellulase production in the cellulolytic fungus Talaromyces sp.
真菌菌株感知不溶性纤维素的确切机制尚不清楚,但研究表明真菌在纤维素分解过程中产生的转糖基化产物具有重要作用。在此,我们采用多组学方法鉴定转糖基化代谢产物,并确定它们在模式菌株解纤维素篮状菌MTCC25456中对纤维素酶诱导的功能。
解纤维素篮状菌是一种新型的高纤维素分解真菌菌株。基于基因组检测和生化分析,我们预测其孢子表面存在纤维素酶。我们进行了代谢组分析,结果表明这些膜结合纤维素酶作用于多糖,形成二糖及其转糖基化衍生物的混合物。不可避免地,代谢物数据与碳水化合物代谢途径中差异表达基因的KEGG富集分析之间存在高度相关性。对转糖基化产物混合物对纤维素酶诱导作用的分析表明,总纤维素酶增加了57%。使用体外诱导试验和响应面方法对这些代谢物进行进一步研究,结果表明解纤维素篮状菌会产生细胞壁裂解酶来响应纤维二糖和龙胆二糖作为刺激物。具体而言,纤维二糖与龙胆二糖的化学计量比为2.5:1时,纤维素酶合成增加了2.4倍。在cre基因敲除菌株中应用优化的诱导剂显著提高了酶产量。
这是第一项关于使用优化诱导剂客观评估和提高纤维素酶产量的研究。诱导剂鉴定和基因工程提高了解纤维素真菌解纤维素篮状菌中的纤维素酶产量。