UMR S 717, Clinical Epidemiology and Biostatistics, INSERM, 75010 Paris, France.
J Clin Epidemiol. 2013 Sep;66(9):1029-37. doi: 10.1016/j.jclinepi.2013.03.018. Epub 2013 Jun 22.
Propensity score (PS) methods are applied frequently to multicenter data. To date, methods for handling cluster effect when analyzing PS-matched data have not been assessed for survival data. Accordingly, the objective of the present study was to determine the optimal PS-model to account for a potential cluster effect when analysing multicenter observational data.
In the current study, five strategies were compared. One analyzed the original sample and four used global or within-cluster matching using a global or a cluster-specific PS. All were applied to simulated data sets and to two cohorts.
Failing to account for clustering in the PS model led to a biased estimate of the treatment effect and to an inflated test size. Within-cluster matching using either a global or a cluster-specific PS led to the lowest mean squared error and to a test size close to its nominal value. However, the cluster-specific approach led to a drastic reduction of sample size compared with the global PS one. Analyses of the cohorts confirmed that the latter model led to the smallest sample size, but also necessitated the discard of a high number of clusters from the matched sample.
In the considered simulation scenarios, within-cluster matching using a global PS presented the best balance between sample size and bias reduction, and it should be used when applying PS methods to clustered observational survival data.
倾向评分(PS)方法常用于多中心数据。迄今为止,分析 PS 匹配数据时处理聚类效应的方法尚未针对生存数据进行评估。因此,本研究的目的是确定在分析多中心观察性数据时,能够考虑潜在聚类效应的最佳 PS 模型。
本研究比较了五种策略。一种方法分析了原始样本,另外四种方法使用全局或基于聚类的匹配,分别使用全局或特定于聚类的 PS。所有方法均应用于模拟数据集和两个队列。
在 PS 模型中未考虑聚类会导致治疗效果的偏差估计和检验大小膨胀。使用全局或特定于聚类的 PS 进行基于聚类的匹配会导致最小均方误差和接近名义值的检验大小。然而,与全局 PS 相比,特定于聚类的方法会导致样本量大幅减少。对队列的分析证实,后一种模型所需的样本量最小,但也需要从匹配样本中丢弃大量聚类。
在考虑的模拟场景中,使用全局 PS 进行基于聚类的匹配在样本量和偏差减少之间取得了最佳平衡,在将 PS 方法应用于聚类生存数据时应使用该方法。