Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada.
Research Institute, McGill University Health Center, Montreal, Canada.
BMC Med Res Methodol. 2021 Nov 23;21(1):257. doi: 10.1186/s12874-021-01452-1.
Individual-patient data meta-analysis (IPD-MA) is an increasingly popular approach because of its analytical benefits. IPD-MA of observational studies must overcome the problem of confounding, otherwise biased estimates of treatment effect may be obtained. One approach to reducing confounding bias could be the use of propensity score matching (PSM). IPD-MA can be considered as two-stage clustered data (patients within studies) and propensity score matching can be implemented within studies, across studies, and combining both.
This article focuses on implementation of four PSM-based approaches for the analysis of data structure that exploit IPD-MA in two ways: (i) estimation of propensity score model using single-level or random-effects logistic regression; and (ii) matching of propensity scores (PS) across studies, within studies or preferential-within studies. We investigated the performance of these approaches through a simulation study, which considers an IPD-MA that examined the success of different treatments for multidrug-resistant tuberculosis (MDR-TB). The simulation parameters were varied according to three treatment prevalences (according to studies, 50% and 30%), three levels of heterogeneity between studies (low, moderate and high) and three levels of pooled odds ratio (1, 1.5, 3).
All approaches showed greater biases at the higher levels of heterogeneity regardless of the choices of treatment prevalences. However, matching of propensity scores using within-study and preferential-within study reported better performance compared to matching across studies when treatment prevalence varied across-studies. For fixed prevalences, a random-effect propensity score model to estimate propensity scores followed by matching of propensity scores across-studies achieved lower biases compared to other PSM-based approaches.
Propensity score matching has wide application in health research while only limited literature is available on the implementation of PSM methods in IPD-MA, and until now methodological performance of PSM methods have not been examined. We believe, this work offers an intuition to the applied researcher for the choice of the PSM-based approaches.
由于其分析优势,个体患者数据荟萃分析(IPD-MA)是一种越来越受欢迎的方法。必须克服观察性研究的混杂问题,否则可能会得到有偏的治疗效果估计。减少混杂偏倚的一种方法可能是使用倾向评分匹配(PSM)。IPD-MA 可被视为两阶段聚类数据(研究内的患者),倾向评分匹配可在研究内、研究间以及两者结合的情况下实施。
本文重点介绍了四种基于倾向评分匹配的方法在分析数据结构中的应用,这些方法通过两种方式利用 IPD-MA:(i)使用单水平或随机效应逻辑回归估计倾向评分模型;(ii)在研究间、研究内或研究内优先匹配倾向评分。我们通过一项模拟研究来研究这些方法的性能,该研究考察了不同治疗方法对耐多药结核病(MDR-TB)的疗效。模拟参数根据三种治疗流行率(根据研究,50%和 30%)、三种研究间异质性水平(低、中和高)和三种汇总比值比(1、1.5 和 3)而变化。
无论治疗流行率的选择如何,所有方法在异质性水平较高时都表现出更大的偏差。然而,与研究间匹配相比,在治疗流行率在研究间变化时,使用研究内和研究内优先匹配倾向评分的方法表现出更好的性能。对于固定流行率,使用随机效应倾向评分模型估计倾向评分,然后在研究间进行倾向评分匹配,与其他基于倾向评分的方法相比,能够获得更低的偏差。
倾向评分匹配在健康研究中有广泛的应用,而关于在 IPD-MA 中实施倾向评分匹配方法的文献有限,直到现在,还没有对倾向评分匹配方法的方法性能进行检验。我们相信,这项工作为应用研究人员提供了选择基于倾向评分的方法的直觉。