Suppr超能文献

基于 L1-范数最大化的线性判别分析。

Linear discriminant analysis based on L1-norm maximization.

机构信息

Sichuan Province Key Lab of Signal and Information Processing, Southwest Jiaotong University, Chengdu 610031, China.

出版信息

IEEE Trans Image Process. 2013 Aug;22(8):3018-27. doi: 10.1109/TIP.2013.2253476. Epub 2013 Mar 20.

Abstract

Linear discriminant analysis (LDA) is a well-known dimensionality reduction technique, which is widely used for many purposes. However, conventional LDA is sensitive to outliers because its objective function is based on the distance criterion using L2-norm. This paper proposes a simple but effective robust LDA version based on L1-norm maximization, which learns a set of local optimal projection vectors by maximizing the ratio of the L1-norm-based between-class dispersion and the L1-norm-based within-class dispersion. The proposed method is theoretically proved to be feasible and robust to outliers while overcoming the singular problem of the within-class scatter matrix for conventional LDA. Experiments on artificial datasets, standard classification datasets and three popular image databases demonstrate the efficacy of the proposed method.

摘要

线性判别分析(LDA)是一种著名的降维技术,广泛应用于许多领域。然而,传统的 LDA 对离群值很敏感,因为它的目标函数是基于 L2 范数的距离准则。本文提出了一种简单而有效的基于 L1 范数最大化的鲁棒 LDA 版本,通过最大化基于 L1 范数的类间离散度与基于 L1 范数的类内离散度的比值,学习一组局部最优的投影向量。所提出的方法在理论上被证明是可行的和对离群值鲁棒的,同时克服了传统 LDA 中类内散布矩阵的奇异问题。在人工数据集、标准分类数据集和三个流行的图像数据库上的实验验证了该方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验