Suppr超能文献

构建一个包含实际测量参数值的多淋巴管段淋巴管模型。

Development of a model of a multi-lymphangion lymphatic vessel incorporating realistic and measured parameter values.

作者信息

Bertram C D, Macaskill C, Davis M J, Moore J E

机构信息

School of Mathematics and Statistics, University of Sydney, NSW, 2006, Australia,

出版信息

Biomech Model Mechanobiol. 2014 Apr;13(2):401-16. doi: 10.1007/s10237-013-0505-0. Epub 2013 Jun 26.

Abstract

Our published model of a lymphatic vessel consisting of multiple actively contracting segments between non-return valves has been further developed by the incorporation of properties derived from observations and measurements of rat mesenteric vessels. These included (1) a refractory period between contractions, (2) a highly nonlinear form for the passive part of the pressure-diameter relationship, (3) hysteretic and transmural-pressure-dependent valve opening and closing pressure thresholds and (4) dependence of active tension on muscle length as reflected in local diameter. Experimentally, lymphatic valves are known to be biased to stay open. In consequence, in the improved model, vessel pumping of fluid suffers losses by regurgitation, and valve closure is dependent on backflow first causing an adverse valve pressure drop sufficient to reach the closure threshold. The assumed resistance of an open valve therefore becomes a critical parameter, and experiments to measure this quantity are reported here. However, incorporating this parameter value, along with other parameter values based on existing measurements, led to ineffective pumping. It is argued that the published measurements of valve-closing pressure threshold overestimate this quantity owing to neglect of micro-pipette resistance. An estimate is made of the extent of the possible resulting error. Correcting by this amount, the pumping performance is improved, but still very inefficient unless the open-valve resistance is also increased beyond the measured level. Arguments are given as to why this is justified, and other areas where experimental data are lacking are identified. The model is capable of future adaptation as new experimental data appear.

摘要

我们已发表的由多个在止回阀之间主动收缩节段组成的淋巴管模型,通过纳入从大鼠肠系膜血管的观察和测量中得出的特性得到了进一步发展。这些特性包括:(1)收缩之间的不应期;(2)压力-直径关系的被动部分的高度非线性形式;(3)滞后和跨壁压力依赖性的瓣膜开启和关闭压力阈值;(4)如局部直径所反映的主动张力对肌肉长度的依赖性。实验上,已知淋巴瓣膜倾向于保持开放。因此,在改进后的模型中,血管对流体的泵送因反流而遭受损失,并且瓣膜关闭取决于首先导致足以达到关闭阈值的不利瓣膜压力降的回流。因此,开放瓣膜的假定阻力成为一个关键参数,本文报告了测量该量的实验。然而,结合这个参数值以及基于现有测量的其他参数值,导致泵送无效。有人认为,由于忽略了微量移液器阻力,已发表的瓣膜关闭压力阈值测量高估了这个量。对可能产生的误差程度进行了估计。通过这个量进行校正后,泵送性能有所改善,但除非开放瓣膜阻力也增加到超过测量水平,否则仍然效率很低。给出了为什么这样做合理的论据,并确定了其他缺乏实验数据的领域。随着新的实验数据出现,该模型能够在未来进行调整。

相似文献

1
Development of a model of a multi-lymphangion lymphatic vessel incorporating realistic and measured parameter values.
Biomech Model Mechanobiol. 2014 Apr;13(2):401-16. doi: 10.1007/s10237-013-0505-0. Epub 2013 Jun 26.
2
Simulation of a chain of collapsible contracting lymphangions with progressive valve closure.
J Biomech Eng. 2011 Jan;133(1):011008. doi: 10.1115/1.4002799.
3
Consequences of intravascular lymphatic valve properties: a study of contraction timing in a multi-lymphangion model.
Am J Physiol Heart Circ Physiol. 2016 Apr 1;310(7):H847-60. doi: 10.1152/ajpheart.00669.2015. Epub 2016 Jan 8.
4
Incorporating measured valve properties into a numerical model of a lymphatic vessel.
Comput Methods Biomech Biomed Engin. 2014;17(14):1519-34. doi: 10.1080/10255842.2012.753066. Epub 2013 Feb 6.
5
The effects of valve leaflet mechanics on lymphatic pumping assessed using numerical simulations.
Sci Rep. 2019 Jul 23;9(1):10649. doi: 10.1038/s41598-019-46669-9.
6
Parameter sensitivity analysis of a lumped-parameter model of a chain of lymphangions in series.
Am J Physiol Heart Circ Physiol. 2013 Dec;305(12):H1709-17. doi: 10.1152/ajpheart.00403.2013. Epub 2013 Oct 11.
7
Passive pressure-diameter relationship and structural composition of rat mesenteric lymphangions.
Lymphat Res Biol. 2012 Dec;10(4):152-63. doi: 10.1089/lrb.2011.0015. Epub 2012 Nov 12.
8
The Lymphatic Vascular System: Does Nonuniform Lymphangion Length Limit Flow-Rate?
J Biomech Eng. 2024 Sep 1;146(9). doi: 10.1115/1.4065217.
9
A fully coupled fluid-structure interaction model of the secondary lymphatic valve.
Comput Methods Biomech Biomed Engin. 2018 Dec;21(16):813-823. doi: 10.1080/10255842.2018.1521964. Epub 2018 Nov 6.
10
Valve-related modes of pump failure in collecting lymphatics: numerical and experimental investigation.
Biomech Model Mechanobiol. 2017 Dec;16(6):1987-2003. doi: 10.1007/s10237-017-0933-3. Epub 2017 Jul 11.

引用本文的文献

2
Multiscale homogenization for dual porosity time-dependent Darcy-Brinkman/Darcy coupling and its application to the lymph node.
R Soc Open Sci. 2024 Jul 17;11(7):231983. doi: 10.1098/rsos.231983. eCollection 2024 Jul.
3
The Lymphatic Vascular System: Does Nonuniform Lymphangion Length Limit Flow-Rate?
J Biomech Eng. 2024 Sep 1;146(9). doi: 10.1115/1.4065217.
4
Potentiating glymphatic drainage minimizes post-traumatic cerebral oedema.
Nature. 2023 Nov;623(7989):992-1000. doi: 10.1038/s41586-023-06737-7. Epub 2023 Nov 15.
6
A multiscale sliding filament model of lymphatic muscle pumping.
Biomech Model Mechanobiol. 2021 Dec;20(6):2179-2202. doi: 10.1007/s10237-021-01501-0. Epub 2021 Sep 2.
7
Fluid pumping of peristaltic vessel fitted with elastic valves.
J Fluid Mech. 2021 Jul 10;918. doi: 10.1017/jfm.2021.302. Epub 2021 May 11.
8
Characterization of rat tail lymphatic contractility and biomechanics: incorporating nitric oxide-mediated vasoregulation.
J R Soc Interface. 2020 Sep;17(170):20200598. doi: 10.1098/rsif.2020.0598. Epub 2020 Sep 30.
10
The mechanical responses of advecting cells in confined flow.
Biomicrofluidics. 2020 May 4;14(3):031501. doi: 10.1063/5.0005154. eCollection 2020 May.

本文引用的文献

1
Incorporating measured valve properties into a numerical model of a lymphatic vessel.
Comput Methods Biomech Biomed Engin. 2014;17(14):1519-34. doi: 10.1080/10255842.2012.753066. Epub 2013 Feb 6.
2
Intrinsic increase in lymphangion muscle contractility in response to elevated afterload.
Am J Physiol Heart Circ Physiol. 2012 Oct 1;303(7):H795-808. doi: 10.1152/ajpheart.01097.2011. Epub 2012 Aug 10.
3
Independent and interactive effects of preload and afterload on the pump function of the isolated lymphangion.
Am J Physiol Heart Circ Physiol. 2012 Oct 1;303(7):H809-24. doi: 10.1152/ajpheart.01098.2011. Epub 2012 Aug 3.
4
Determinants of valve gating in collecting lymphatic vessels from rat mesentery.
Am J Physiol Heart Circ Physiol. 2011 Jul;301(1):H48-60. doi: 10.1152/ajpheart.00133.2011. Epub 2011 Apr 1.
5
A model of a radially expanding and contracting lymphangion.
J Biomech. 2011 Apr 7;44(6):1001-7. doi: 10.1016/j.jbiomech.2011.02.018. Epub 2011 Mar 4.
6
Simulation of a chain of collapsible contracting lymphangions with progressive valve closure.
J Biomech Eng. 2011 Jan;133(1):011008. doi: 10.1115/1.4002799.
7
Synchronization of Ca2+ oscillations: a coupled oscillator-based mechanism in smooth muscle.
FEBS J. 2010 Jan;277(2):278-85. doi: 10.1111/j.1742-4658.2009.07437.x. Epub 2009 Nov 6.
8
Length-tension relationships of small arteries, veins, and lymphatics from the rat mesenteric microcirculation.
Am J Physiol Heart Circ Physiol. 2007 Apr;292(4):H1943-52. doi: 10.1152/ajpheart.01000.2005. Epub 2006 Dec 15.
9
Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics.
Microcirculation. 2006 Oct-Nov;13(7):597-610. doi: 10.1080/10739680600893909.
10
Regional variations of contractile activity in isolated rat lymphatics.
Microcirculation. 2004 Sep;11(6):477-92. doi: 10.1080/10739680490476033.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验