Suppr超能文献

大鼠肠系膜淋巴管瓣膜启闭的影响因素。

Determinants of valve gating in collecting lymphatic vessels from rat mesentery.

机构信息

Dept. of Medical Pharmacology & Physiology, Univ. of Missouri School of Medicine, 1 Hospital Dr., Rm. M451, Columbia, MO 65212, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2011 Jul;301(1):H48-60. doi: 10.1152/ajpheart.00133.2011. Epub 2011 Apr 1.

Abstract

Secondary lymphatic valves are essential for minimizing backflow of lymph and are presumed to gate passively according to the instantaneous trans-valve pressure gradient. We hypothesized that valve gating is also modulated by vessel distention, which could alter leaflet stiffness and coaptation. To test this hypothesis, we devised protocols to measure the small pressure gradients required to open or close lymphatic valves and determine if the gradients varied as a function of vessel diameter. Lymphatic vessels were isolated from rat mesentery, cannulated, and pressurized using a servo-control system. Detection of valve leaflet position simultaneously with diameter and intraluminal pressure changes in two-valve segments revealed the detailed temporal relationships between these parameters during the lymphatic contraction cycle. The timing of valve movements was similar to that of cardiac valves, but only when lymphatic vessel afterload was elevated. The pressure gradients required to open or close a valve were determined in one-valve segments during slow, ramp-wise pressure elevation, either from the input or output side of the valve. Tests were conducted over a wide range of baseline pressures (and thus diameters) in passive vessels as well as in vessels with two levels of imposed tone. Surprisingly, the pressure gradient required for valve closure varied >20-fold (0.1-2.2 cmH(2)O) as a passive vessel progressively distended. Similarly, the pressure gradient required for valve opening varied sixfold with vessel distention. Finally, our functional evidence supports the concept that lymphatic muscle tone exerts an indirect effect on valve gating.

摘要

二级淋巴瓣膜对于最大限度地减少淋巴逆流是必不可少的,并且据推测可以根据瞬时跨瓣膜压力梯度被动地进行瓣膜。我们假设瓣膜也会受到血管扩张的调节,这可能会改变瓣叶的硬度和贴合度。为了验证这一假设,我们设计了方案来测量打开或关闭淋巴瓣膜所需的小压力梯度,并确定梯度是否随血管直径而变化。从大鼠肠系膜中分离出淋巴管,用伺服控制系统进行插管和加压。同时检测两个瓣膜段中的瓣膜小叶位置和腔内压力变化,揭示了在淋巴收缩周期中这些参数之间的详细时间关系。瓣膜运动的时间与心脏瓣膜相似,但仅在淋巴管后负荷升高时。在缓慢的斜坡式压力升高期间,在单瓣膜段中确定打开或关闭瓣膜所需的压力梯度,无论是从瓣膜的输入侧还是输出侧进行。在被动血管以及具有两种程度的强制张力的血管中,在广泛的基线压力(因此直径)范围内进行了测试。令人惊讶的是,随着被动血管的逐渐扩张,关闭瓣膜所需的压力梯度变化超过 20 倍(0.1-2.2cmH(2)O)。同样,瓣膜打开所需的压力梯度随血管扩张而变化六倍。最后,我们的功能证据支持这样的概念,即淋巴肌肉张力对瓣膜起间接作用。

相似文献

1
Determinants of valve gating in collecting lymphatic vessels from rat mesentery.大鼠肠系膜淋巴管瓣膜启闭的影响因素。
Am J Physiol Heart Circ Physiol. 2011 Jul;301(1):H48-60. doi: 10.1152/ajpheart.00133.2011. Epub 2011 Apr 1.
3
Intrinsic increase in lymphangion muscle contractility in response to elevated afterload.在升高的后负荷作用下,淋巴管平滑肌收缩力的内在增加。
Am J Physiol Heart Circ Physiol. 2012 Oct 1;303(7):H795-808. doi: 10.1152/ajpheart.01097.2011. Epub 2012 Aug 10.
8
Lymphatic pumping: mechanics, mechanisms and malfunction.淋巴泵血:机制、原理与功能障碍
J Physiol. 2016 Oct 15;594(20):5749-5768. doi: 10.1113/JP272088. Epub 2016 Aug 2.

引用本文的文献

5
Understanding the Lymphatic System: Tissue-on-Chip Modeling.了解淋巴系统:芯片上组织建模。
Annu Rev Biomed Eng. 2025 May;27(1):73-100. doi: 10.1146/annurev-bioeng-110222-100246. Epub 2025 Jan 22.
8
Harnessing the lymphatic system.利用淋巴系统。
Heart Fail Rev. 2024 Oct 15. doi: 10.1007/s10741-024-10449-z.

本文引用的文献

2
A model of a radially expanding and contracting lymphangion.一个淋巴管的径向扩张和收缩模型。
J Biomech. 2011 Apr 7;44(6):1001-7. doi: 10.1016/j.jbiomech.2011.02.018. Epub 2011 Mar 4.
4
Myogenic constriction and dilation of isolated lymphatic vessels.分离的淋巴管的肌源性收缩与舒张
Am J Physiol Heart Circ Physiol. 2009 Feb;296(2):H293-302. doi: 10.1152/ajpheart.01040.2008. Epub 2008 Nov 21.
6
Modulation of lymphatic muscle contractility by the neuropeptide substance P.神经肽P物质对淋巴管平滑肌收缩性的调节作用。
Am J Physiol Heart Circ Physiol. 2008 Aug;295(2):H587-97. doi: 10.1152/ajpheart.01029.2007. Epub 2008 Jun 6.
9
Intrinsic pump-conduit behavior of lymphangions.淋巴管的内在泵-管道行为。
Am J Physiol Regul Integr Comp Physiol. 2007 Apr;292(4):R1510-8. doi: 10.1152/ajpregu.00258.2006. Epub 2006 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验