Bird Gregory H, Crannell W Christian, Walensky Loren D
Dana-Farber Cancer Institute and Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts.
Curr Protoc Chem Biol. 2011 Sep 1;3(3):99-117. doi: 10.1002/9780470559277.ch110042.
The peptide α-helix represents one of nature's most featured protein shapes and is employed in a diversity of protein architectures, from the cytoskeletal infrastructure to the most intimate contact points between crucial signaling proteins. By installing an all-hydrocarbon crosslink into native sequences, the shape and biological activity of natural peptide α-helices can be recapitulated, yielding a chemical toolbox that can be used both to interrogate the protein interactome and to modulate interaction networks for potential therapeutic benefit. Here, current methodology for synthesizing stabilized α-helices (SAH) corresponding to key protein interaction domains is described. A stepwise approach is taken for the production of crosslinking non-natural amino acids, incorporation of the residues into peptide templates, and application of ruthenium-catalyzed ring-closing metathesis to generate hydrocarbon-stapled peptides. Through facile derivatization and functionalization steps, SAHs can be tailored for a broad range of applications in biochemical, structural, proteomic, cellular, and in vivo studies. Curr. Protoc. Chem. Biol. 3:99-117 © 2011 by John Wiley & Sons, Inc.
肽α-螺旋是自然界中最具特色的蛋白质形状之一,被应用于多种蛋白质结构中,从细胞骨架基础结构到关键信号蛋白之间最紧密的接触点。通过在天然序列中引入全碳交联,天然肽α-螺旋的形状和生物活性得以重现,从而产生一个化学工具箱,可用于探究蛋白质相互作用组,并调节相互作用网络以获得潜在的治疗益处。本文描述了目前合成与关键蛋白质相互作用结构域相对应的稳定α-螺旋(SAH)的方法。采用逐步方法来生产交联非天然氨基酸,将这些残基掺入肽模板中,并应用钌催化的闭环复分解反应生成烃钉肽。通过简便的衍生化和功能化步骤,SAH可针对生化、结构、蛋白质组学、细胞和体内研究中的广泛应用进行定制。《化学与生物学实验指南》第3卷:99 - 117页 2011年 约翰威立国际出版公司版权所有