Jiang Sicheng, Tian Yu, Nicolaescu Vlad, Mansurov Aslan, Randall Glenn, Tirrell Matthew V, LaBelle James L
Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States of America.
Argonne National Laboratory, Lemont, Illinois 60439, United States of America.
Pept Sci (Hoboken). 2024 Nov;116(6). doi: 10.1002/pep2.24375. Epub 2024 Jul 22.
The COVID-19 pandemic drove a uniquely fervent pursuit to explore the potential of peptide, antibody, protein, and small-molecule based antiviral agents against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). The interaction between the SARS-CoV2 spike protein with the angiotensin-converting enzyme 2 (ACE2) receptor that mediates viral cell entry was a particularly interesting target given its well described protein-protein interaction (PPI). This PPI is mediated by an α-helical portion of ACE2 binding to the receptor binding domain (RBD) of the spike protein and thought to be susceptible to blockade through molecular mimicry. Small numbers of hydrocarbon-stapled synthetic peptides designed to disrupt or block this interaction were tested individually and were found to have variable efficacy despite having related or overlapping sequences and similarly increased α-helicity. Reasons for these differences are unclear and reported pre-clinical successes have been limited. The current study sought to better understand reasons for these differences through evaluation of a comprehensive collection of hydrocarbon stapled peptides, designed based on four distinct principles: stapling position, number of staples, amino acid sequence, and primary sequence length. Surprisingly, we observed that the helicity and amino acid sequence iterations of hydrocarbon-stapled peptides did not correlate with their bioactivity. Our results highlight the importance of iterative and combinatorial testing of these compounds to determine a configuration that best mimics natural binding and allows for chain flexibility while sacrificing structural helicity.
新冠疫情引发了一场独特而热烈的探索,旨在研究基于肽、抗体、蛋白质和小分子的抗病毒药物针对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的潜力。鉴于严重急性呼吸综合征冠状病毒2(SARS-CoV-2)刺突蛋白与介导病毒进入细胞的血管紧张素转换酶2(ACE2)受体之间的相互作用有着详尽描述的蛋白质-蛋白质相互作用(PPI),它成为了一个特别有趣的靶点。这种蛋白质-蛋白质相互作用是由ACE2的一个α螺旋部分与刺突蛋白的受体结合域(RBD)结合介导的,并且被认为易受分子模拟的阻断。少量旨在破坏或阻断这种相互作用的碳氢化合物钉合合成肽被单独测试,结果发现尽管它们具有相关或重叠的序列以及类似增加的α螺旋性,但功效却各不相同。这些差异的原因尚不清楚,并且此前报道的临床前研究成果有限。当前的研究试图通过评估基于四个不同原则设计的一系列碳氢化合物钉合肽,来更好地理解这些差异的原因,这四个原则分别是:钉合位置、钉合数量、氨基酸序列和一级序列长度。令人惊讶的是,我们观察到碳氢化合物钉合肽的螺旋性和氨基酸序列迭代与其生物活性并无关联。我们的研究结果凸显了对这些化合物进行迭代和组合测试的重要性,以确定一种能最佳模拟天然结合、在牺牲结构螺旋性的同时允许链灵活性的构型。