Department of Biochemistry, Medical College of Wisconsin , Milwaukee, Wisconsin 53226, United States.
ACS Chem Biol. 2013 Sep 20;8(9):1955-63. doi: 10.1021/cb400274z. Epub 2013 Jun 26.
Tyrosine sulfation is a post-translational modification that enhances protein-protein interactions and may identify druggable sites in the extracellular space. The G protein-coupled receptor CXCR4 is a prototypical example with three potential sulfation sites at positions 7, 12, and 21. Each receptor sulfotyrosine participates in specific contacts with its chemokine ligand in the structure of a soluble, dimeric CXCL12:CXCR4(1-38) complex, but their relative importance for CXCR4 binding and activation by the monomeric chemokine remains undefined. NMR titrations with short sulfopeptides showed that the tyrosine motifs of CXCR4 varied widely in their contributions to CXCL12 binding affinity and site specificity. Whereas the Tyr21 sulfopeptide bound the same site as in previously solved structures, the Tyr7 and Tyr12 sulfopeptides interacted nonspecifically. Surprisingly, the unsulfated Tyr7 peptide occupied a hydrophobic site on the CXCL12 monomer that is inaccessible in the CXCL12 dimer. Functional analysis of CXCR4 mutants validated the relative importance of individual CXCR4 sulfotyrosine modifications (Tyr21 > Tyr12 > Tyr7) for CXCL12 binding and receptor activation. Biophysical measurements also revealed a cooperative relationship between sulfopeptide binding at the Tyr21 site and CXCL12 dimerization, the first example of allosteric behavior in a chemokine. Future ligands that occupy the sTyr21 recognition site may act as both competitive inhibitors of receptor binding and allosteric modulators of chemokine function. Together, our data suggests that sulfation does not ubiquitously enhance complex affinity and that distinct patterns of tyrosine sulfation could encode oligomer selectivity, implying another layer of regulation for chemokine signaling.
酪氨酸硫酸化是一种翻译后修饰,可增强蛋白质-蛋白质相互作用,并可能鉴定细胞外空间中的可成药位点。G 蛋白偶联受体 CXCR4 就是一个典型的例子,其位置 7、12 和 21 处有三个潜在的硫酸化位点。每个受体硫酸酪氨酸都参与了可溶性二聚体 CXCL12:CXCR4(1-38)复合物中与其趋化因子配体的特定接触,但它们对 CXCR4 结合和单体趋化因子激活的相对重要性仍未定义。短硫酸肽的 NMR 滴定表明,CXCR4 的酪氨酸基序在对 CXCL12 结合亲和力和位点特异性的贡献方面差异很大。虽然 Tyr21 硫酸肽与之前解决的结构中的相同位点结合,但 Tyr7 和 Tyr12 硫酸肽则是非特异性相互作用。令人惊讶的是,未硫酸化的 Tyr7 肽占据了 CXCL12 单体上的一个疏水位点,该位点在 CXCL12 二聚体中无法进入。对 CXCR4 突变体的功能分析验证了单个 CXCR4 硫酸酪氨酸修饰(Tyr21>Tyr12>Tyr7)对 CXCL12 结合和受体激活的相对重要性。生物物理测量还揭示了 Tyr21 位点硫酸肽结合与 CXCL12 二聚化之间的协同关系,这是趋化因子中首次出现变构行为的例子。占据 sTyr21 识别位点的未来配体可能既作为受体结合的竞争性抑制剂,又作为趋化因子功能的变构调节剂。总的来说,我们的数据表明,硫酸化并非普遍增强复合物亲和力,并且不同的酪氨酸硫酸化模式可以编码寡聚体选择性,这为趋化因子信号传递提供了另一层调控。