Suppr超能文献

利用几何关系揭示皮质连接中的各向同性、均匀性和模块性之间的关系。

Using geometry to uncover relationships between isotropy, homogeneity, and modularity in cortical connectivity.

机构信息

School of Physics, University of Sydney, Sydney, New South Wales, Australia.

出版信息

Brain Connect. 2013;3(4):423-37. doi: 10.1089/brain.2013.0151. Epub 2013 Aug 3.

Abstract

Inferences of strong modular and hierarchical structure from some cortical network studies conflict with the broadly isotropic homogeneous connectivity that has been found to a first approximation in classical anatomical studies. This conflict is resolved via consideration of the geometry of the cortex. A new geometrically based connection matrix (CM) visualization method is used to better compare experimental CMs with model CMs and thereby minimize appearance of artifacts. Model networks based on spherical geometry containing similar isotropic, homogeneous connection distributions to the experiment are shown to reproduce, interrelate, and explain key properties of experimentally derived networks, such as clustering coefficient (CC), path length, mean degree, and modularity score, using only two parameters that are fitted to an experimental spatial connectivity distribution. A greater CC in the experiment than the model indicates that, while isotropy and homogeneity of connections is a good first approximation, connections at shorter range may exhibit additional perturbations that increase clustering. These geometrically based models provide a comparative framework to assist in the next stage of revealing and analyzing anisotropic and/or inhomogeneous connections in data and their effects on network properties and visualization.

摘要

从一些皮层网络研究中得出的强模块和层次结构的推论与在经典解剖学研究中首次发现的广泛各向同性均匀连接相冲突。这种冲突通过考虑皮层的几何形状得到解决。使用一种新的基于几何的连接矩阵 (CM) 可视化方法,将实验 CM 与模型 CM 进行更好的比较,从而最大限度地减少伪影的出现。基于包含与实验相似的各向同性、均匀连接分布的球体几何形状的模型网络被证明可以复制、相互关联和解释实验得出的网络的关键特性,例如聚类系数 (CC)、路径长度、平均度数和模块分数,仅使用两个参数拟合实验的空间连接分布。实验中的 CC 大于模型表明,虽然连接的各向同性和均匀性是一个很好的初步假设,但短程连接可能会出现额外的波动,从而增加聚类。这些基于几何的模型提供了一个比较框架,有助于在揭示和分析数据中的各向异性和/或不均匀连接及其对网络特性和可视化的影响的下一阶段。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验