Suppr超能文献

几何重整化揭示了多尺度人类连接组的自相似性。

Geometric renormalization unravels self-similarity of the multiscale human connectome.

机构信息

Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain.

Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain.

出版信息

Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):20244-20253. doi: 10.1073/pnas.1922248117. Epub 2020 Aug 5.

Abstract

Structural connectivity in the brain is typically studied by reducing its observation to a single spatial resolution. However, the brain possesses a rich architecture organized over multiple scales linked to one another. We explored the multiscale organization of human connectomes using datasets of healthy subjects reconstructed at five different resolutions. We found that the structure of the human brain remains self-similar when the resolution of observation is progressively decreased by hierarchical coarse-graining of the anatomical regions. Strikingly, a geometric network model, where distances are not Euclidean, predicts the multiscale properties of connectomes, including self-similarity. The model relies on the application of a geometric renormalization protocol which decreases the resolution by coarse-graining and averaging over short similarity distances. Our results suggest that simple organizing principles underlie the multiscale architecture of human structural brain networks, where the same connectivity law dictates short- and long-range connections between different brain regions over many resolutions. The implications are varied and can be substantial for fundamental debates, such as whether the brain is working near a critical point, as well as for applications including advanced tools to simplify the digital reconstruction and simulation of the brain.

摘要

大脑的结构连接通常通过将其观察减少到单一的空间分辨率来研究。然而,大脑具有丰富的架构,这些架构分布在多个与其他架构相互连接的尺度上。我们使用在五个不同分辨率重建的健康受试者数据集,探索了人类连接组的多尺度组织。我们发现,当通过对解剖区域进行层次化的粗粒度处理逐渐降低观察分辨率时,人类大脑的结构仍然保持自相似性。引人注目的是,一个距离不是欧几里得的几何网络模型预测了连接组的多尺度特性,包括自相似性。该模型依赖于应用一种几何重归一化协议,通过粗粒化和在短相似距离上进行平均来降低分辨率。我们的结果表明,简单的组织原则是人类结构大脑网络多尺度架构的基础,在这种架构中,相同的连接法则决定了不同大脑区域之间的短程和长程连接,跨越了多个分辨率。其影响是多样的,对于基本的争论可能具有重要意义,例如大脑是否在临界点附近工作,以及对于应用包括简化大脑的数字重建和模拟的高级工具都具有重要意义。

相似文献

1
Geometric renormalization unravels self-similarity of the multiscale human connectome.几何重整化揭示了多尺度人类连接组的自相似性。
Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):20244-20253. doi: 10.1073/pnas.1922248117. Epub 2020 Aug 5.
2
4
Navigable maps of structural brain networks across species.跨物种的结构脑网络可导航图谱。
PLoS Comput Biol. 2020 Feb 3;16(2):e1007584. doi: 10.1371/journal.pcbi.1007584. eCollection 2020 Feb.
6
Coarse graining and criticality in the human connectome.人类连接组的粗粒化和临界点
Phys Rev E. 2024 Apr;109(4-1):044303. doi: 10.1103/PhysRevE.109.044303.
8
Cliques and cavities in the human connectome.人类连接组中的团块和空洞。
J Comput Neurosci. 2018 Feb;44(1):115-145. doi: 10.1007/s10827-017-0672-6. Epub 2017 Nov 16.
9
Hierarchical complexity of the adult human structural connectome.成人结构连接组的层次复杂性。
Neuroimage. 2019 May 1;191:205-215. doi: 10.1016/j.neuroimage.2019.02.028. Epub 2019 Feb 14.

引用本文的文献

1
The multiscale self-similarity of the weighted human brain connectome.加权人类脑连接组的多尺度自相似性。
PLoS Comput Biol. 2025 Apr 7;21(4):e1012848. doi: 10.1371/journal.pcbi.1012848. eCollection 2025 Apr.
2
Exploring the transmission of cognitive task information through optimal brain pathways.探索认知任务信息通过最佳脑通路的传递。
PLoS Comput Biol. 2025 Mar 7;21(3):e1012870. doi: 10.1371/journal.pcbi.1012870. eCollection 2025 Mar.
6
Brain network communication: concepts, models and applications.脑网络通讯:概念、模型与应用。
Nat Rev Neurosci. 2023 Sep;24(9):557-574. doi: 10.1038/s41583-023-00718-5. Epub 2023 Jul 12.
9
Detecting the ultra low dimensionality of real networks.检测真实网络的超高维数。
Nat Commun. 2022 Oct 15;13(1):6096. doi: 10.1038/s41467-022-33685-z.

本文引用的文献

1
Navigable maps of structural brain networks across species.跨物种的结构脑网络可导航图谱。
PLoS Comput Biol. 2020 Feb 3;16(2):e1007584. doi: 10.1371/journal.pcbi.1007584. eCollection 2020 Feb.
2
Spatial Embedding Imposes Constraints on Neuronal Network Architectures.空间嵌入对神经网络结构施加约束。
Trends Cogn Sci. 2018 Dec;22(12):1127-1142. doi: 10.1016/j.tics.2018.09.007. Epub 2018 Oct 26.
3
Fragility and volatility of structural hubs in the human connectome.人类连接组结构枢纽的脆弱性和不稳定性。
Nat Neurosci. 2018 Aug;21(8):1107-1116. doi: 10.1038/s41593-018-0188-z. Epub 2018 Jul 23.
4
Navigation of brain networks.脑网络导航。
Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):6297-6302. doi: 10.1073/pnas.1801351115. Epub 2018 May 30.
5
Communication dynamics in complex brain networks.复杂脑网络中的通信动态。
Nat Rev Neurosci. 2017 Dec 14;19(1):17-33. doi: 10.1038/nrn.2017.149.
6
Multi-scale brain networks.多尺度脑网络。
Neuroimage. 2017 Oct 15;160:73-83. doi: 10.1016/j.neuroimage.2016.11.006. Epub 2016 Nov 11.
7
Connectome sensitivity or specificity: which is more important?连接组的敏感性还是特异性:哪个更重要?
Neuroimage. 2016 Nov 15;142:407-420. doi: 10.1016/j.neuroimage.2016.06.035. Epub 2016 Jun 28.
8
Generative models of the human connectome.人类连接组的生成模型。
Neuroimage. 2016 Jan 1;124(Pt A):1054-1064. doi: 10.1016/j.neuroimage.2015.09.041. Epub 2015 Sep 30.
9
Modular Brain Networks.模块化脑网络
Annu Rev Psychol. 2016;67:613-40. doi: 10.1146/annurev-psych-122414-033634. Epub 2015 Sep 21.
10
Network geometry inference using common neighbors.使用共同邻居进行网络几何推断。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022807. doi: 10.1103/PhysRevE.92.022807. Epub 2015 Aug 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验