Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain.
Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain.
Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):20244-20253. doi: 10.1073/pnas.1922248117. Epub 2020 Aug 5.
Structural connectivity in the brain is typically studied by reducing its observation to a single spatial resolution. However, the brain possesses a rich architecture organized over multiple scales linked to one another. We explored the multiscale organization of human connectomes using datasets of healthy subjects reconstructed at five different resolutions. We found that the structure of the human brain remains self-similar when the resolution of observation is progressively decreased by hierarchical coarse-graining of the anatomical regions. Strikingly, a geometric network model, where distances are not Euclidean, predicts the multiscale properties of connectomes, including self-similarity. The model relies on the application of a geometric renormalization protocol which decreases the resolution by coarse-graining and averaging over short similarity distances. Our results suggest that simple organizing principles underlie the multiscale architecture of human structural brain networks, where the same connectivity law dictates short- and long-range connections between different brain regions over many resolutions. The implications are varied and can be substantial for fundamental debates, such as whether the brain is working near a critical point, as well as for applications including advanced tools to simplify the digital reconstruction and simulation of the brain.
大脑的结构连接通常通过将其观察减少到单一的空间分辨率来研究。然而,大脑具有丰富的架构,这些架构分布在多个与其他架构相互连接的尺度上。我们使用在五个不同分辨率重建的健康受试者数据集,探索了人类连接组的多尺度组织。我们发现,当通过对解剖区域进行层次化的粗粒度处理逐渐降低观察分辨率时,人类大脑的结构仍然保持自相似性。引人注目的是,一个距离不是欧几里得的几何网络模型预测了连接组的多尺度特性,包括自相似性。该模型依赖于应用一种几何重归一化协议,通过粗粒化和在短相似距离上进行平均来降低分辨率。我们的结果表明,简单的组织原则是人类结构大脑网络多尺度架构的基础,在这种架构中,相同的连接法则决定了不同大脑区域之间的短程和长程连接,跨越了多个分辨率。其影响是多样的,对于基本的争论可能具有重要意义,例如大脑是否在临界点附近工作,以及对于应用包括简化大脑的数字重建和模拟的高级工具都具有重要意义。