Suppr超能文献

从小样本推断的皮质微电路结构

On the Structure of Cortical Microcircuits Inferred from Small Sample Sizes.

作者信息

Vegué Marina, Perin Rodrigo, Roxin Alex

机构信息

Centre de Recerca Matemàtica, Bellaterra, Barcelona, Spain.

Departament de Matemàtiques, Universitat Politècnica de Catalunya, Barcelona, Spain, and.

出版信息

J Neurosci. 2017 Aug 30;37(35):8498-8510. doi: 10.1523/JNEUROSCI.0984-17.2017. Epub 2017 Jul 31.

Abstract

The structure in cortical microcircuits deviates from what would be expected in a purely random network, which has been seen as evidence of clustering. To address this issue, we sought to reproduce the nonrandom features of cortical circuits by considering several distinct classes of network topology, including clustered networks, networks with distance-dependent connectivity, and those with broad degree distributions. To our surprise, we found that all of these qualitatively distinct topologies could account equally well for all reported nonrandom features despite being easily distinguishable from one another at the network level. This apparent paradox was a consequence of estimating network properties given only small sample sizes. In other words, networks that differ markedly in their global structure can look quite similar locally. This makes inferring network structure from small sample sizes, a necessity given the technical difficulty inherent in simultaneous intracellular recordings, problematic. We found that a network statistic called the sample degree correlation (SDC) overcomes this difficulty. The SDC depends only on parameters that can be estimated reliably given small sample sizes and is an accurate fingerprint of every topological family. We applied the SDC criterion to data from rat visual and somatosensory cortex and discovered that the connectivity was not consistent with any of these main topological classes. However, we were able to fit the experimental data with a more general network class, of which all previous topologies were special cases. The resulting network topology could be interpreted as a combination of physical spatial dependence and nonspatial, hierarchical clustering. The connectivity of cortical microcircuits exhibits features that are inconsistent with a simple random network. Here, we show that several classes of network models can account for this nonrandom structure despite qualitative differences in their global properties. This apparent paradox is a consequence of the small numbers of simultaneously recorded neurons in experiment: when inferred via small sample sizes, many networks may be indistinguishable despite being globally distinct. We develop a connectivity measure that successfully classifies networks even when estimated locally with a few neurons at a time. We show that data from rat cortex is consistent with a network in which the likelihood of a connection between neurons depends on spatial distance and on nonspatial, asymmetric clustering.

摘要

皮层微电路中的结构偏离了纯随机网络所预期的情况,这被视为聚类的证据。为了解决这个问题,我们试图通过考虑几种不同类型的网络拓扑来重现皮层电路的非随机特征,包括聚类网络、具有距离依赖性连接的网络以及具有广泛度分布的网络。令我们惊讶的是,我们发现所有这些在性质上截然不同的拓扑结构都能同样好地解释所有已报道的非随机特征,尽管它们在网络层面很容易相互区分。这种明显的矛盾是仅根据小样本量估计网络属性的结果。换句话说,在全局结构上有显著差异的网络在局部可能看起来非常相似。鉴于同时进行细胞内记录存在固有的技术困难,从小样本量推断网络结构是必要的,但这存在问题。我们发现一种称为样本度相关性(SDC)的网络统计量克服了这一困难。SDC仅取决于在小样本量下能够可靠估计的参数,并且是每个拓扑家族的准确指纹。我们将SDC标准应用于大鼠视觉和体感皮层的数据,发现其连接性与这些主要拓扑类别中的任何一个都不一致。然而,我们能够用一个更通用的网络类别来拟合实验数据,之前所有的拓扑结构都是该类别中的特殊情况。由此产生的网络拓扑结构可以解释为物理空间依赖性和非空间层次聚类相结合。皮层微电路的连接性表现出与简单随机网络不一致的特征。在这里我们表明几类网络模型可以解释这种非随机结构尽管它们在全局属性上存在质的差异这种明显的矛盾是实验中同时记录神经元数量少的结果:当通过小样本量推断时,许多网络尽管在全局上不同但可能无法区分。我们开发了一种连接性测量方法,即使每次仅用少数神经元进行局部估计时也能成功地对网络进行分类我们表明来自大鼠皮层的数据与一个网络一致在该网络中神经元之间连接的可能性取决于空间距离和非空间不对称聚类

相似文献

1
On the Structure of Cortical Microcircuits Inferred from Small Sample Sizes.
J Neurosci. 2017 Aug 30;37(35):8498-8510. doi: 10.1523/JNEUROSCI.0984-17.2017. Epub 2017 Jul 31.
2
Dense neuron clustering explains connectivity statistics in cortical microcircuits.
PLoS One. 2014 Apr 14;9(4):e94292. doi: 10.1371/journal.pone.0094292. eCollection 2014.
3
Variability v.s. synchronicity of neuronal activity in local cortical network models with different wiring topologies.
J Comput Neurosci. 2007 Oct;23(2):237-50. doi: 10.1007/s10827-007-0030-1. Epub 2007 Apr 6.
4
Estimating complex cortical networks via surface recordings- a critical note.
Neuroimage. 2010 Nov 1;53(2):439-49. doi: 10.1016/j.neuroimage.2010.06.018. Epub 2010 Jun 11.
5
Using geometry to uncover relationships between isotropy, homogeneity, and modularity in cortical connectivity.
Brain Connect. 2013;3(4):423-37. doi: 10.1089/brain.2013.0151. Epub 2013 Aug 3.
6
Connection-type-specific biases make uniform random network models consistent with cortical recordings.
J Neurophysiol. 2014 Oct 15;112(8):1801-14. doi: 10.1152/jn.00629.2013. Epub 2014 Jun 18.
7
The relation between structural and functional connectivity patterns in complex brain networks.
Int J Psychophysiol. 2016 May;103:149-60. doi: 10.1016/j.ijpsycho.2015.02.011. Epub 2015 Feb 10.
9
Geometric effects on complex network structure in the cortex.
Phys Rev Lett. 2011 Jul 1;107(1):018102. doi: 10.1103/PhysRevLett.107.018102.
10
Non-parametric model selection for subject-specific topological organization of resting-state functional connectivity.
Neuroimage. 2011 Jun 1;56(3):1453-62. doi: 10.1016/j.neuroimage.2011.02.028. Epub 2011 Feb 19.

引用本文的文献

1
Maximum likelihood estimation of spatially dependent interactions in large populations of cortical neurons.
Front Comput Neurosci. 2025 Aug 13;19:1639829. doi: 10.3389/fncom.2025.1639829. eCollection 2025.
2
How plasticity shapes the formation of neuronal assemblies driven by oscillatory and stochastic inputs.
J Comput Neurosci. 2025 Mar;53(1):9-23. doi: 10.1007/s10827-024-00885-z. Epub 2024 Dec 11.
3
Correlated Somatosensory Input in Parvalbumin/Pyramidal Cells in Mouse Motor Cortex.
eNeuro. 2023 May 8;10(5). doi: 10.1523/ENEURO.0488-22.2023. Print 2023 May.
4
Relating local connectivity and global dynamics in recurrent excitatory-inhibitory networks.
PLoS Comput Biol. 2023 Jan 23;19(1):e1010855. doi: 10.1371/journal.pcbi.1010855. eCollection 2023 Jan.
5
Reconstruction of neocortex: Organelles, compartments, cells, circuits, and activity.
Cell. 2022 Mar 17;185(6):1082-1100.e24. doi: 10.1016/j.cell.2022.01.023. Epub 2022 Feb 24.
6
Regional Neurodegeneration : The Protective Role of Neural Activity.
Front Comput Neurosci. 2021 Mar 29;15:580107. doi: 10.3389/fncom.2021.580107. eCollection 2021.
7
Dynamics of Structured Networks of Winfree Oscillators.
Front Syst Neurosci. 2021 Feb 10;15:631377. doi: 10.3389/fnsys.2021.631377. eCollection 2021.
8
Cyclic transitions between higher order motifs underlie sustained asynchronous spiking in sparse recurrent networks.
PLoS Comput Biol. 2020 Sep 30;16(9):e1007409. doi: 10.1371/journal.pcbi.1007409. eCollection 2020 Sep.
9
Firing rate homeostasis counteracts changes in stability of recurrent neural networks caused by synapse loss in Alzheimer's disease.
PLoS Comput Biol. 2020 Aug 25;16(8):e1007790. doi: 10.1371/journal.pcbi.1007790. eCollection 2020 Aug.

本文引用的文献

1
Mean-field equations for neuronal networks with arbitrary degree distributions.
Phys Rev E. 2017 Apr;95(4-1):042323. doi: 10.1103/PhysRevE.95.042323. Epub 2017 Apr 27.
2
High-Degree Neurons Feed Cortical Computations.
PLoS Comput Biol. 2016 May 9;12(5):e1004858. doi: 10.1371/journal.pcbi.1004858. eCollection 2016 May.
3
Is cortical connectivity optimized for storing information?
Nat Neurosci. 2016 May;19(5):749-755. doi: 10.1038/nn.4286. Epub 2016 Apr 11.
4
Principles of connectivity among morphologically defined cell types in adult neocortex.
Science. 2015 Nov 27;350(6264):aac9462. doi: 10.1126/science.aac9462.
5
An algorithm to predict the connectome of neural microcircuits.
Front Comput Neurosci. 2015 Oct 8;9:120. doi: 10.3389/fncom.2015.00120. eCollection 2015.
6
The neocortical microcircuit collaboration portal: a resource for rat somatosensory cortex.
Front Neural Circuits. 2015 Oct 8;9:44. doi: 10.3389/fncir.2015.00044. eCollection 2015.
7
Reconstruction and Simulation of Neocortical Microcircuitry.
Cell. 2015 Oct 8;163(2):456-92. doi: 10.1016/j.cell.2015.09.029.
8
Saturated Reconstruction of a Volume of Neocortex.
Cell. 2015 Jul 30;162(3):648-61. doi: 10.1016/j.cell.2015.06.054.
9
Formation and maintenance of neuronal assemblies through synaptic plasticity.
Nat Commun. 2014 Nov 14;5:5319. doi: 10.1038/ncomms6319.
10
Functional Clusters, Hubs, and Communities in the Cortical Microconnectome.
Cereb Cortex. 2015 Oct;25(10):3743-57. doi: 10.1093/cercor/bhu252. Epub 2014 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验