Scuola Normale Superiore, Piazza dei Cavalieri, 7 I-56126 Pisa, Italy.
J Chem Phys. 2013 Jun 21;138(23):234108. doi: 10.1063/1.4811113.
Analytical equations to calculate second order electric and magnetic properties of a molecular system embedded into a polarizable environment are presented. The treatment is limited to molecules described at the self consistent field level of theory, including Hartree-Fock theory as well as Kohn-Sham density functional theory and is extended to the Gauge-Including Atomic Orbital method. The polarizable embedding is described by means of our already implemented polarizable quantum mechanical/molecular mechanical (MM) methodology, where the polarization in the MM layer is handled by means of the fluctuating charge (FQ) model. A further layer of description, i.e, the polarizable continuum model, can also be included. The FQ(/polarizable continuum model) contributions to the properties are derived, with reference to the calculation of the magnetic susceptibility, the nuclear magnetic resonance shielding tensor, electron spin resonance g-tensors, and hyperfine couplings.
本文提出了一种计算嵌入极化环境中分子体系二阶电、磁性质的解析方程。该处理方法仅限于在自洽场理论水平上描述的分子,包括 Hartree-Fock 理论以及 Kohn-Sham 密度泛函理论,并扩展到包含原子轨道的规范方法。极化嵌入通过我们已经实现的极化量子力学/分子力学 (MM) 方法来描述,其中 MM 层中的极化通过变化电荷 (FQ) 模型来处理。还可以包括进一步的描述,即极化连续体模型。本文参考磁化率、核磁共振屏蔽张量、电子自旋共振 g-张量和超精细耦合的计算,推导了 FQ(/极化连续体模型)对性质的贡献。