Lagardère Louis, Lipparini Filippo, Polack Étienne, Stamm Benjamin, Cancès Éric, Schnieders Michael, Ren Pengyu, Maday Yvon, Piquemal Jean-Philip
UPMC Univ. Paris 06, Institut du Calcul et de la Simulation, F-75005, Paris, France ; UPMC Univ. Paris 06, UMR 7617, Laboratoire de Chimie Théorique, F-75005, Paris, France.
UPMC Univ. Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France ; UPMC Univ. Paris 06, UMR 7617, Laboratoire de Chimie Théorique, F-75005, Paris, France ; UPMC Univ. Paris 06, Institut du Calcul et de la Simulation, F-75005, Paris, France.
J Chem Theory Comput. 2014 Feb 28;10(4):1638-1651. doi: 10.1021/ct401096t.
In this paper, we present a scalable and efficient implementation of point dipole-based polarizable force fields for molecular dynamics (MD) simulations with periodic boundary conditions (PBC). The Smooth Particle-Mesh Ewald technique is combined with two optimal iterative strategies, namely, a preconditioned conjugate gradient solver and a Jacobi solver in conjunction with the Direct Inversion in the Iterative Subspace for convergence acceleration, to solve the polarization equations. We show that both solvers exhibit very good parallel performances and overall very competitive timings in an energy-force computation needed to perform a MD step. Various tests on large systems are provided in the context of the polarizable AMOEBA force field as implemented in the newly developed Tinker-HP package which is the first implementation for a polarizable model making large scale experiments for massively parallel PBC point dipole models possible. We show that using a large number of cores offers a significant acceleration of the overall process involving the iterative methods within the context of spme and a noticeable improvement of the memory management giving access to very large systems (hundreds of thousands of atoms) as the algorithm naturally distributes the data on different cores. Coupled with advanced MD techniques, gains ranging from 2 to 3 orders of magnitude in time are now possible compared to non-optimized, sequential implementations giving new directions for polarizable molecular dynamics in periodic boundary conditions using massively parallel implementations.
在本文中,我们展示了一种可扩展且高效的基于点偶极子的可极化力场实现方法,用于具有周期性边界条件(PBC)的分子动力学(MD)模拟。光滑粒子网格埃瓦尔德技术与两种优化的迭代策略相结合,即预处理共轭梯度求解器和雅可比求解器,并结合迭代子空间中的直接反演以加速收敛,来求解极化方程。我们表明,在执行MD步所需的能量 - 力计算中,这两种求解器都展现出非常好的并行性能以及总体极具竞争力的计算时间。在新开发的Tinker - HP软件包中实现的可极化AMOEBA力场的背景下,提供了对大型系统的各种测试,这是首个针对可极化模型的实现,使得大规模并行PBC点偶极子模型的大规模实验成为可能。我们表明,使用大量核心可显著加速涉及spme内迭代方法的整个过程,并显著改善内存管理,从而能够处理非常大的系统(数十万原子),因为该算法会自然地将数据分布在不同核心上。与先进的MD技术相结合,与未优化的顺序实现相比,现在时间上有可能获得2到3个数量级的提升,为使用大规模并行实现的周期性边界条件下的可极化分子动力学提供了新的方向。