Suppr超能文献

长潜伏期肌肉活动反映了任务水平而不是关节水平的连续、延迟的感觉运动反馈错误。

Long-latency muscle activity reflects continuous, delayed sensorimotor feedback of task-level and not joint-level error.

机构信息

Neuroscience Program, Emory University, Atlanta, Georgia;

出版信息

J Neurophysiol. 2013 Sep;110(6):1278-90. doi: 10.1152/jn.00609.2012. Epub 2013 Jun 26.

Abstract

In both the upper and lower limbs, evidence suggests that short-latency electromyographic (EMG) responses to mechanical perturbations are modulated based on muscle stretch or joint motion, whereas long-latency responses are modulated based on attainment of task-level goals, e.g., desired direction of limb movement. We hypothesized that long-latency responses are modulated continuously by task-level error feedback. Previously, we identified an error-based sensorimotor feedback transformation that describes the time course of EMG responses to ramp-and-hold perturbations during standing balance (Safavynia and Ting 2013; Welch and Ting 2008, 2009). Here, our goals were 1) to test the robustness of the sensorimotor transformation over a richer set of perturbation conditions and postural states; and 2) to explicitly test whether the sensorimotor transformation is based on task-level vs. joint-level error. We developed novel perturbation trains of acceleration pulses such that perturbations were applied when the body deviated from the desired, upright state while recovering from preceding perturbations. The entire time course of EMG responses (∼4 s) in an antagonistic muscle pair was reconstructed using a weighted sum of center of mass (CoM) kinematics preceding EMGs at long-latency delays (∼100 ms). Furthermore, CoM and joint kinematic trajectories became decorrelated during perturbation trains, allowing us to explicitly compare task-level vs. joint feedback in the same experimental condition. Reconstruction of EMGs was poorer using joint kinematics compared with CoM kinematics and required unphysiologically short (∼10 ms) delays. Thus continuous, long-latency feedback of task-level variables may be a common mechanism regulating long-latency responses in the upper and lower limbs.

摘要

在上肢和下肢中,有证据表明,机械扰动的短潜伏期肌电图(EMG)反应根据肌肉拉伸或关节运动进行调节,而长潜伏期反应则根据任务水平的目标进行调节,例如,期望的肢体运动方向。我们假设长潜伏期反应会根据任务级别的误差反馈进行连续调节。之前,我们已经确定了一种基于误差的感觉运动反馈转换,该转换描述了在站立平衡期间对斜坡和保持扰动的 EMG 反应的时间过程(Safavynia 和 Ting,2013 年;Welch 和 Ting,2008 年,2009 年)。在这里,我们的目标是 1)测试感觉运动转换在更丰富的扰动条件和姿势状态下的稳健性;2)明确测试感觉运动转换是否基于任务级别还是关节级别误差。我们开发了新型的加速度脉冲扰动序列,以便在身体从期望的直立状态偏离并从先前的扰动中恢复时施加扰动。使用前 EMG 长潜伏期延迟(约 100ms)的质心(CoM)运动学的加权和来重建拮抗肌对的 EMG 反应的整个时间过程(约 4s)。此外,在扰动序列期间,CoM 和关节运动轨迹变得不相关,这使我们能够在相同的实验条件下明确比较任务级别与关节反馈。与 CoM 运动学相比,关节运动学重建的 EMG 较差,并且需要不切实际的短(约 10ms)延迟。因此,任务级别变量的连续长潜伏期反馈可能是调节上下肢长潜伏期反应的常见机制。

相似文献

1
Long-latency muscle activity reflects continuous, delayed sensorimotor feedback of task-level and not joint-level error.
J Neurophysiol. 2013 Sep;110(6):1278-90. doi: 10.1152/jn.00609.2012. Epub 2013 Jun 26.
3
Rapid and flexible whole body postural responses are evoked from perturbations to the upper limb during goal-directed reaching.
J Neurophysiol. 2017 Mar 1;117(3):1070-1083. doi: 10.1152/jn.01004.2015. Epub 2016 Dec 21.
5
A feedback model reproduces muscle activity during human postural responses to support-surface translations.
J Neurophysiol. 2008 Feb;99(2):1032-8. doi: 10.1152/jn.01110.2007. Epub 2007 Dec 19.
6
A feedback model explains the differential scaling of human postural responses to perturbation acceleration and velocity.
J Neurophysiol. 2009 Jun;101(6):3294-309. doi: 10.1152/jn.90775.2008. Epub 2009 Apr 8.
7
Short-latency crossed responses in the human biceps femoris muscle.
J Physiol. 2015 Aug 15;593(16):3657-71. doi: 10.1113/JP270422.
8
Goal-dependent modulation of the long-latency stretch response at the shoulder, elbow, and wrist.
J Neurophysiol. 2015 Dec;114(6):3242-54. doi: 10.1152/jn.00702.2015. Epub 2015 Oct 7.

引用本文的文献

1
Selective engagement of long-latency reflexes in postural control through wobble board training.
Sci Rep. 2024 Dec 30;14(1):31819. doi: 10.1038/s41598-024-83101-3.
2
Center of mass states render multijoint torques throughout standing balance recovery.
J Neurophysiol. 2025 Jan 1;133(1):206-221. doi: 10.1152/jn.00367.2024. Epub 2024 Dec 10.
3
Center of mass kinematic reconstruction during steady-state walking using optimized template models.
PLoS One. 2024 Nov 5;19(11):e0313156. doi: 10.1371/journal.pone.0313156. eCollection 2024.
6
Precise cortical contributions to sensorimotor feedback control during reactive balance.
PLoS Comput Biol. 2024 Apr 17;20(4):e1011562. doi: 10.1371/journal.pcbi.1011562. eCollection 2024 Apr.
7
Voluntary muscle coactivation in quiet standing elicits reciprocal rather than coactive agonist-antagonist control of reactive balance.
J Neurophysiol. 2023 Jun 1;129(6):1378-1388. doi: 10.1152/jn.00458.2022. Epub 2023 May 10.
9
What is the contribution of voluntary and reflex processes to sensorimotor control of balance?
Front Bioeng Biotechnol. 2022 Sep 29;10:973716. doi: 10.3389/fbioe.2022.973716. eCollection 2022.
10
Motor synergy generalization framework for new targets in multi-planar and multi-directional reaching task.
R Soc Open Sci. 2022 May 18;9(5):211721. doi: 10.1098/rsos.211721. eCollection 2022 May.

本文引用的文献

2
Voluntary and reactive recruitment of locomotor muscle synergies during perturbed walking.
J Neurosci. 2012 Aug 29;32(35):12237-50. doi: 10.1523/JNEUROSCI.6344-11.2012.
3
Modular organization of balance control following perturbations during walking.
J Neurophysiol. 2012 Oct;108(7):1895-906. doi: 10.1152/jn.00217.2012. Epub 2012 Jul 5.
4
Optimal feedback control and the long-latency stretch response.
Exp Brain Res. 2012 May;218(3):341-59. doi: 10.1007/s00221-012-3041-8. Epub 2012 Feb 28.
5
Fast corrective responses are evoked by perturbations approaching the natural variability of posture and movement tasks.
J Neurophysiol. 2012 May;107(10):2821-32. doi: 10.1152/jn.00849.2011. Epub 2012 Feb 22.
6
Contributions of feed-forward and feedback strategies at the human ankle during control of unstable loads.
Exp Brain Res. 2012 Mar;217(1):53-66. doi: 10.1007/s00221-011-2972-9. Epub 2011 Dec 15.
7
Task-dependent coordination of rapid bimanual motor responses.
J Neurophysiol. 2012 Feb;107(3):890-901. doi: 10.1152/jn.00787.2011. Epub 2011 Nov 9.
8
Primary motor cortex underlies multi-joint integration for fast feedback control.
Nature. 2011 Sep 28;478(7369):387-90. doi: 10.1038/nature10436.
9
Task-level feedback can explain temporal recruitment of spatially fixed muscle synergies throughout postural perturbations.
J Neurophysiol. 2012 Jan;107(1):159-77. doi: 10.1152/jn.00653.2011. Epub 2011 Sep 28.
10
Task goals influence online corrections and adaptation of reaching movements.
J Neurophysiol. 2011 Nov;106(5):2622-31. doi: 10.1152/jn.00301.2010. Epub 2011 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验