Suppr超能文献

用于肌内肌电图记录的植入式肌电传感器

Implantable myoelectric sensors (IMESs) for intramuscular electromyogram recording.

作者信息

Weir Richard F ff, Troyk Phil R, DeMichele Glen A, Kerns Douglas A, Schorsch Jack F, Maas Huub

机构信息

Biomechatronics Development Laboratory, Rehabilitation Institute of Chicago, Chicago, IL 60611, USA.

出版信息

IEEE Trans Biomed Eng. 2009 Jan;56(1):159-71. doi: 10.1109/TBME.2008.2005942.

Abstract

We have developed a multichannel electrogmyography sensor system capable of receiving and processing signals from up to 32 implanted myoelectric sensors (IMES). The appeal of implanted sensors for myoelectric control is that electromyography (EMG) signals can be measured at their source providing relatively cross-talk-free signals that can be treated as independent control sites. An external telemetry controller receives telemetry sent over a transcutaneous magnetic link by the implanted electrodes. The same link provides power and commands to the implanted electrodes. Wireless telemetry of EMG signals from sensors implanted in the residual musculature eliminates the problems associated with percutaneous wires, such as infection, breakage, and marsupialization. Each implantable sensor consists of a custom-designed application-specified integrated circuit that is packaged into a biocompatible RF BION capsule from the Alfred E. Mann Foundation. Implants are designed for permanent long-term implantation with no servicing requirements. We have a fully operational system. The system has been tested in animals. Implants have been chronically implanted in the legs of three cats and are still completely operational four months after implantation.

摘要

我们开发了一种多通道肌电图传感器系统,该系统能够接收和处理来自多达32个植入式肌电传感器(IMES)的信号。植入式传感器用于肌电控制的吸引力在于,可以在肌电图(EMG)信号的源头进行测量,从而提供相对无串扰的信号,这些信号可被视为独立的控制位点。一个外部遥测控制器接收植入电极通过经皮磁链路发送的遥测数据。同一链路为植入电极提供电力和指令。对植入残余肌肉组织中的传感器所采集的EMG信号进行无线遥测,消除了与经皮导线相关的问题,如感染、断裂和囊袋化。每个可植入传感器都包含一个定制设计的专用集成电路,该电路被封装在阿尔弗雷德·E·曼恩基金会生产的生物相容性射频生物胶囊中。植入物设计用于长期永久植入,无需维护。我们有一个完全可运行的系统。该系统已在动物身上进行了测试。植入物已长期植入三只猫的腿部,植入四个月后仍完全可运行。

相似文献

1
Implantable myoelectric sensors (IMESs) for intramuscular electromyogram recording.
IEEE Trans Biomed Eng. 2009 Jan;56(1):159-71. doi: 10.1109/TBME.2008.2005942.
2
IMES: an implantable myoelectric sensor.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:1730-3. doi: 10.1109/IEMBS.2007.4352644.
3
Decoding individuated finger flexions with Implantable MyoElectric Sensors.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:193-6. doi: 10.1109/IEMBS.2008.4649123.
4
Technical Details of the Implantable Myoelectric Sensor (IMES) System for Multifunction Prosthesis Control.
Conf Proc IEEE Eng Med Biol Soc. 2005;2005:7337-40. doi: 10.1109/IEMBS.2005.1616206.
5
An implantable myoelectric sensor based prosthesis control system.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2970-3. doi: 10.1109/IEMBS.2006.259871.
6
Rechargeable wireless EMG sensor for prosthetic control.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5074-6. doi: 10.1109/IEMBS.2010.5626202.
7
A 3-Mbps, 802.11g-Based EMG Recording System With Fully Implantable 5-Electrode EMG Acquisition Device.
IEEE Trans Biomed Circuits Syst. 2020 Aug;14(4):889-902. doi: 10.1109/TBCAS.2020.3009088. Epub 2020 Jul 14.
8
Feasibility of a Wireless Implantable Multi-electrode System for High-bandwidth Prosthetic Interfacing: Animal and Cadaver Study.
Clin Orthop Relat Res. 2022 Jun 1;480(6):1191-1204. doi: 10.1097/CORR.0000000000002135. Epub 2022 Feb 23.
10
Continuous detection and decoding of dexterous finger flexions with implantable myoelectric sensors.
IEEE Trans Neural Syst Rehabil Eng. 2010 Aug;18(4):424-32. doi: 10.1109/TNSRE.2010.2047590. Epub 2010 Apr 8.

引用本文的文献

2
Overcoming failure: improving acceptance and success of implanted neural interfaces.
Bioelectron Med. 2025 Mar 14;11(1):6. doi: 10.1186/s42234-025-00168-7.
3
Area Selective Atomic Layer Deposition for the Use on Active Implants: An Overview of Available Process Technology.
Adv Healthc Mater. 2025 Feb;14(4):e2403149. doi: 10.1002/adhm.202403149. Epub 2024 Dec 26.
4
Sonomyography for Control of Upper-Limb Prostheses: Current State and Future Directions.
J Prosthet Orthot. 2024 Jul;36(3):174-184. doi: 10.1097/jpo.0000000000000482.
5
Real-Time Prosthetic Digit Actuation by Optical Read-out of Activity-Dependent Calcium Signals in an Ex Vivo Peripheral Nerve.
Int IEEE EMBS Conf Neural Eng. 2019 Mar;2019:143-146. doi: 10.1109/NER.2019.8717033. Epub 2019 May 20.
9
Using Principles of Motor Control to Analyze Performance of Human Machine Interfaces.
Res Sq. 2023 May 16:rs.3.rs-2763325. doi: 10.21203/rs.3.rs-2763325/v1.
10
Clinical viability of magnetic bead implants in muscle.
Front Bioeng Biotechnol. 2022 Oct 25;10:1010276. doi: 10.3389/fbioe.2022.1010276. eCollection 2022.

本文引用的文献

2
Technical Details of the Implantable Myoelectric Sensor (IMES) System for Multifunction Prosthesis Control.
Conf Proc IEEE Eng Med Biol Soc. 2005;2005:7337-40. doi: 10.1109/IEMBS.2005.1616206.
3
Real-time myoprocessors for a neural controlled powered exoskeleton arm.
IEEE Trans Biomed Eng. 2006 Nov;53(11):2387-96. doi: 10.1109/TBME.2006.880883.
4
Simulation of intramuscular EMG signals detected using implantable myoelectric sensors (IMES).
IEEE Trans Biomed Eng. 2006 Oct;53(10):1926-33. doi: 10.1109/TBME.2006.881774.
5
Direct neural sensory feedback and control of a prosthetic arm.
IEEE Trans Neural Syst Rehabil Eng. 2005 Dec;13(4):468-72. doi: 10.1109/TNSRE.2005.856072.
6
A heuristic fuzzy logic approach to EMG pattern recognition for multifunctional prosthesis control.
IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):280-91. doi: 10.1109/TNSRE.2005.847357.
7
The extraction of neural strategies from the surface EMG.
J Appl Physiol (1985). 2004 Apr;96(4):1486-95. doi: 10.1152/japplphysiol.01070.2003.
8
Second-generation microstimulator.
Artif Organs. 2002 Mar;26(3):228-31. doi: 10.1046/j.1525-1594.2002.06938.x.
9
A wavelet-based continuous classification scheme for multifunction myoelectric control.
IEEE Trans Biomed Eng. 2001 Mar;48(3):302-11. doi: 10.1109/10.914793.
10
Fuzzy EMG classification for prosthesis control.
IEEE Trans Rehabil Eng. 2000 Sep;8(3):305-11. doi: 10.1109/86.867872.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验