Department of Applied Physics, Aalto University , P.O. Box 13500, FI-00076 Aalto, Finland.
Acc Chem Res. 2013 Nov 19;46(11):2686-95. doi: 10.1021/ar400103r. Epub 2013 Jun 27.
Halogen bonding is an emerging noncovalent interaction for constructing supramolecular assemblies. Though similar to the more familiar hydrogen bonding, four primary differences between these two interactions make halogen bonding a unique tool for molecular recognition and the design of functional materials. First, halogen bonds tend to be much more directional than (single) hydrogen bonds. Second, the interaction strength scales with the polarizability of the bond-donor atom, a feature that researchers can tune through single-atom mutation. In addition, halogen bonds are hydrophobic whereas hydrogen bonds are hydrophilic. Lastly, the size of the bond-donor atom (halogen) is significantly larger than hydrogen. As a result, halogen bonding provides supramolecular chemists with design tools that cannot be easily met with other types of noncovalent interactions and opens up unprecedented possibilities in the design of smart functional materials. This Account highlights the recent advances in the design of halogen-bond-based functional materials. Each of the unique features of halogen bonding, directionality, tunable interaction strength, hydrophobicity, and large donor atom size, makes a difference. Taking advantage of the hydrophobicity, researchers have designed small-size ion transporters. The large halogen atom size provided a platform for constructing all-organic light-emitting crystals that efficiently generate triplet electrons and have a high phosphorescence quantum yield. The tunable interaction strengths provide tools for understanding light-induced macroscopic motions in photoresponsive azobenzene-containing polymers, and the directionality renders halogen bonding useful in the design on functional supramolecular liquid crystals and gel-phase materials. Although halogen bond based functional materials design is still in its infancy, we foresee a bright future for this field. We expect that materials designed based on halogen bonding could lead to applications in biomimetics, optics/photonics, functional surfaces, and photoswitchable supramolecules.
卤键是一种新兴的非共价相互作用,可用于构建超分子组装体。尽管卤键类似于更为人熟知的氢键,但这两种相互作用有四个主要区别,这使得卤键成为分子识别和功能材料设计的独特工具。首先,卤键往往比(单)氢键具有更强的方向性。其次,相互作用强度与键供体原子的极化率相关,研究人员可以通过单原子突变来调节这一特性。此外,卤键是疏水性的,而氢键是亲水性的。最后,键供体原子(卤素)的尺寸明显大于氢。因此,卤键为超分子化学家提供了设计工具,这些工具无法轻易通过其他类型的非共价相互作用来实现,并为智能功能材料的设计开辟了前所未有的可能性。本综述重点介绍了基于卤键的功能材料设计的最新进展。卤键的每个独特特征,包括方向性、可调相互作用强度、疏水性和大供体原子尺寸,都发挥了作用。利用疏水性,研究人员设计了小尺寸的离子转运体。大卤素原子尺寸为构建全有机发光晶体提供了平台,这些晶体有效地产生三重态电子,具有高磷光量子产率。可调相互作用强度为理解光响应型含偶氮苯聚合物中光诱导的宏观运动提供了工具,而方向性则使卤键在功能性超分子液晶和凝胶相材料的设计中具有应用价值。尽管基于卤键的功能材料设计仍处于起步阶段,但我们对该领域的前景充满期待。我们预计,基于卤键设计的材料可能会在仿生学、光学/光子学、功能表面和光致开关超分子等领域得到应用。