IEEE Trans Image Process. 2013 Nov;22(11):4249-59. doi: 10.1109/TIP.2013.2271548. Epub 2013 Jun 27.
This paper proposes a novel image-based framework to manipulate the illumination of human face through adaptive layer decomposition. According to our framework, only a single reference image, without any knowledge of the 3D geometry or material information of the input face, is needed. To transfer the illumination effects of a reference face image to a normal lighting face, we first decompose the lightness layers of the reference and the input images into large-scale and detail layers through weighted least squares (WLS) filter with adaptive smoothing parameters according to the gradient values of the face images. The large-scale layer of the reference image is filtered with the guidance of the input image by guided filter with adaptive smoothing parameters according to the face structures. The relit result is obtained by replacing the largescale layer of the input image with that of the reference image. To normalize the illumination effects of a non-normal lighting face (i.e., face delighting), we introduce similar reflectance prior to the layer decomposition stage by WLS filter, which make the normalized result less affected by the high contrast light and shadow effects of the input face. Through these two procedures, we can change the illumination effects of a non-normal lighting face by first normalizing the illumination and then transferring the illumination of another reference face to it. We acquire convincing relit results of both face relighting and delighting on numerous input and reference face images with various illumination effects and genders. Comparisons with previous papers show that our framework is less affected by geometry differences and can preserve better the identification structure and skin color of the input face.
本文提出了一种新颖的基于图像的框架,通过自适应层分解来操纵人脸的光照。根据我们的框架,只需要一张单一的参考图像,而不需要输入人脸的 3D 几何形状或材料信息的任何知识。为了将参考人脸图像的光照效果传递到正常光照的人脸,我们首先通过加权最小二乘法(WLS)滤波器,根据人脸图像的梯度值,将参考图像和输入图像的亮度层分解为大尺度和细节层。根据人脸结构,通过自适应平滑参数的引导滤波器,用输入图像引导参考图像的大尺度层进行滤波。通过用参考图像的大尺度层替换输入图像的大尺度层来获得重新光照的结果。为了归一化非正常光照人脸(即人脸愉快)的光照效果,我们在层分解阶段引入了类似反射率的先验通过 WLS 滤波器,使归一化结果较少受到输入人脸高对比度光影效果的影响。通过这两个步骤,我们可以通过首先归一化光照,然后将另一个参考人脸的光照转移到它上面来改变非正常光照人脸的光照效果。我们在具有各种光照效果和性别的大量输入和参考人脸图像上获得了令人信服的重新光照和愉快的结果。与以前的论文相比,我们的框架受几何差异的影响较小,并且可以更好地保留输入人脸的识别结构和肤色。