Suppr超能文献

专有的多基因风险算法:保护科学创新还是掩盖其不足?

Proprietary Algorithms for Polygenic Risk: Protecting Scientific Innovation or Hiding the Lack of It?

机构信息

Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA 30322, USA.

出版信息

Genes (Basel). 2019 Jun 13;10(6):448. doi: 10.3390/genes10060448.

Abstract

Direct-to-consumer genetic testing companies aim to predict the risks of complex diseases using proprietary algorithms. Companies keep algorithms as trade secrets for competitive advantage, but a market that thrives on the premise that customers can make their own decisions about genetic testing should respect customer autonomy and informed decision making and maximize opportunities for transparency. The algorithm itself is only one piece of the information that is deemed essential for understanding how prediction algorithms are developed and evaluated. Companies should be encouraged to disclose everything else, including the expected risk distribution of the algorithm when applied in the population, using a benchmark DNA dataset. A standardized presentation of information and risk distributions allows customers to compare test offers and scientists to verify whether the undisclosed algorithms could be valid. A new model of oversight in which stakeholders collaboratively keep a check on the commercial market is needed.

摘要

直接面向消费者的基因检测公司旨在使用专有的算法来预测复杂疾病的风险。公司将算法作为商业秘密保留,以获得竞争优势,但这个市场的繁荣前提是客户可以自主决定是否进行基因检测,因此应该尊重客户自主权和知情决策,并最大限度地提高透明度机会。算法本身只是被认为对于理解预测算法的开发和评估至关重要的信息的一部分。应该鼓励公司披露其他所有信息,包括在人群中应用算法时的预期风险分布,使用基准 DNA 数据集。信息和风险分布的标准化呈现可以让客户比较测试产品,科学家也可以验证未公开的算法是否有效。需要建立一个新的监管模式,让利益相关者共同监督商业市场。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2152/6627729/67729ec185ff/genes-10-00448-g001.jpg

相似文献

2
New Framework Developed for Polygenic Risk Score Reporting.
Am J Med Genet A. 2021 Jun;185(6):1645-1646. doi: 10.1002/ajmg.a.61675.
3
XGBoost-Based E-Commerce Customer Loss Prediction.
Comput Intell Neurosci. 2022 Jul 31;2022:1858300. doi: 10.1155/2022/1858300. eCollection 2022.
4
The limits of scale.
Harv Bus Rev. 2014 Apr;92(4):94-9, 134.
6
Contribution of consanguinuity to polygenic and multifactorial diseases.
Nat Genet. 2006 Nov;38(11):1224-5. doi: 10.1038/ng1106-1224.
7
Genome-wide association studies (GWAS) in complex diseases: advantages and limitations.
Reumatol Clin. 2012 Mar-Apr;8(2):56-7. doi: 10.1016/j.reuma.2011.07.005. Epub 2011 Nov 15.
8
Mathematical model for polygenic diseases.
Med Hypotheses. 2005;64(6):1240-1. doi: 10.1016/j.mehy.2005.01.008.
9
Companies and the customers who hate them.
Harv Bus Rev. 2007 Jun;85(6):78-84, 141.
10
[Direct-to-consumer genetic testing through Internet: marketing, ethical and social issues].
Med Sci (Paris). 2011 Jan;27(1):95-102. doi: 10.1051/medsci/201127195.

引用本文的文献

1
The Emotional Dimension of Value: A Proposal for Its Quantitative Measurement.
Front Psychol. 2022 Feb 3;12:807412. doi: 10.3389/fpsyg.2021.807412. eCollection 2021.
2
Genetically influenced externalizing and internalizing risk pathways as novel prevention targets.
Psychol Addict Behav. 2022 Sep;36(6):595-606. doi: 10.1037/adb0000759. Epub 2021 Jun 10.
4

本文引用的文献

1
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead.
Nat Mach Intell. 2019 May;1(5):206-215. doi: 10.1038/s42256-019-0048-x. Epub 2019 May 13.
2
Polygenic risk scores: a biased prediction?
Genome Med. 2018 Dec 27;10(1):100. doi: 10.1186/s13073-018-0610-x.
3
Genetic disease risks can be misestimated across global populations.
Genome Biol. 2018 Nov 14;19(1):179. doi: 10.1186/s13059-018-1561-7.
4
Machine learning in medicine: Addressing ethical challenges.
PLoS Med. 2018 Nov 6;15(11):e1002689. doi: 10.1371/journal.pmed.1002689. eCollection 2018 Nov.
5
Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations.
Nat Genet. 2018 Sep;50(9):1219-1224. doi: 10.1038/s41588-018-0183-z. Epub 2018 Aug 13.
6
Regulating Black-Box Medicine.
Mich Law Rev. 2017;116(3):421-74.
7
Quality criteria for health checks: development of a European consensus agreement.
Prev Med. 2014 Oct;67:238-41. doi: 10.1016/j.ypmed.2014.08.005. Epub 2014 Aug 10.
9
Variations in predicted risks in personal genome testing for common complex diseases.
Genet Med. 2014 Jan;16(1):85-91. doi: 10.1038/gim.2013.80. Epub 2013 Jun 27.
10
Strengthening the reporting of genetic risk prediction studies: the GRIPS statement.
Eur J Hum Genet. 2011 Aug;19(8):833-6. doi: 10.1038/ejhg.2011.25. Epub 2011 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验