Suppr超能文献

评估用于风险分类规则的新标志物的个体水平增量值。

Evaluating subject-level incremental values of new markers for risk classification rule.

作者信息

Cai T, Tian L, Lloyd-Jones D, Wei L J

机构信息

Department of Biostatistics, Harvard University, Boston, MA, 02115, USA,

出版信息

Lifetime Data Anal. 2013 Oct;19(4):547-67. doi: 10.1007/s10985-013-9272-6. Epub 2013 Jun 27.

Abstract

Suppose that we need to classify a population of subjects into several well-defined ordered risk categories for disease prevention or management with their "baseline" risk factors/markers. In this article, we present a systematic approach to identify subjects using their conventional risk factors/markers who would benefit from a new set of risk markers for more accurate classification. Specifically for each subgroup of individuals with the same conventional risk estimate, we present inference procedures for the reclassification and the corresponding correct re-categorization rates with the new markers. We then apply these new tools to analyze the data from the Cardiovascular Health Study sponsored by the US National Heart, Lung, and Blood Institute. We used Framingham risk factors plus the information of baseline anti-hypertensive drug usage to identify adult American women who may benefit from the measurement of a new blood biomarker, CRP, for better risk classification in order to intensify prevention of coronary heart disease for the subsequent 10 years.

摘要

假设我们需要根据受试者的“基线”风险因素/标志物,将一群受试者分类到几个明确界定的有序风险类别中,以进行疾病预防或管理。在本文中,我们提出了一种系统方法,利用受试者的传统风险因素/标志物来识别那些将从一组新的风险标志物中受益的受试者,以便进行更准确的分类。具体而言,对于具有相同传统风险估计的每个个体亚组,我们给出了重新分类的推断程序以及使用新标志物时相应的正确重新分类率。然后,我们应用这些新工具来分析由美国国立心肺血液研究所资助的心血管健康研究的数据。我们使用弗明汉姆风险因素加上基线抗高血压药物使用信息,来识别可能从测量一种新的血液生物标志物CRP中受益的成年美国女性,以便在随后的10年中更好地进行风险分类,从而加强冠心病的预防。

相似文献

1
Evaluating subject-level incremental values of new markers for risk classification rule.
Lifetime Data Anal. 2013 Oct;19(4):547-67. doi: 10.1007/s10985-013-9272-6. Epub 2013 Jun 27.
5
Predicting cardiovascular risk: so what do we do now?
Arch Intern Med. 2006 Jul 10;166(13):1342-4. doi: 10.1001/archinte.166.13.1342.
8
Plasma concentration of C-reactive protein and the calculated Framingham Coronary Heart Disease Risk Score.
Circulation. 2003 Jul 15;108(2):161-5. doi: 10.1161/01.CIR.0000080289.72166.CF. Epub 2003 Jun 30.
9
Sleep duration, C-reactive protein and risk of incident coronary heart disease--results from the Framingham Offspring Study.
Nutr Metab Cardiovasc Dis. 2014 Jun;24(6):600-5. doi: 10.1016/j.numecd.2013.12.012. Epub 2014 Jan 21.

引用本文的文献

1
Estimation of treatment policies based on functional predictors.
Stat Sin. 2014 Jul;24(3):1461-1485. doi: 10.5705/ss.2012.196.
2
This special issue contains several papers on clinical trials, exemplifying Ross Prentice's influence. Preface.
Lifetime Data Anal. 2013 Oct;19(4):437-41. doi: 10.1007/s10985-013-9284-2. Epub 2013 Oct 16.
3
PERFORMANCE GUARANTEES FOR INDIVIDUALIZED TREATMENT RULES.
Ann Stat. 2011 Apr 1;39(2):1180-1210. doi: 10.1214/10-AOS864.
4
On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data.
Stat Med. 2011 May 10;30(10):1105-17. doi: 10.1002/sim.4154. Epub 2011 Jan 13.

本文引用的文献

1
Assessment of clinical validity of a breast cancer risk model combining genetic and clinical information.
J Natl Cancer Inst. 2010 Nov 3;102(21):1618-27. doi: 10.1093/jnci/djq388. Epub 2010 Oct 18.
2
Performance of common genetic variants in breast-cancer risk models.
N Engl J Med. 2010 Mar 18;362(11):986-93. doi: 10.1056/NEJMoa0907727.
3
Integrating the predictiveness of a marker with its performance as a classifier.
Am J Epidemiol. 2008 Feb 1;167(3):362-8. doi: 10.1093/aje/kwm305. Epub 2007 Nov 2.
8
Use and misuse of the receiver operating characteristic curve in risk prediction.
Circulation. 2007 Feb 20;115(7):928-35. doi: 10.1161/CIRCULATIONAHA.106.672402.
9
Evidence-based guidelines for cardiovascular disease prevention in women: 2007 update.
Circulation. 2007 Mar 20;115(11):1481-501. doi: 10.1161/CIRCULATIONAHA.107.181546. Epub 2007 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验