Suppr超能文献

将标志物的预测性与其作为分类器的性能相结合。

Integrating the predictiveness of a marker with its performance as a classifier.

作者信息

Pepe Margaret S, Feng Ziding, Huang Ying, Longton Gary, Prentice Ross, Thompson Ian M, Zheng Yingye

机构信息

Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.

出版信息

Am J Epidemiol. 2008 Feb 1;167(3):362-8. doi: 10.1093/aje/kwm305. Epub 2007 Nov 2.

Abstract

There are two popular statistical approaches to biomarker evaluation. One models the risk of disease (or disease outcome) with, for example, logistic regression. A marker is considered useful if it has a strong effect on risk. The second evaluates classification performance by use of measures such as sensitivity, specificity, predictive values, and receiver operating characteristic curves. There is controversy about which approach is more appropriate. Moreover, the two approaches can give contradictory results on the same data. The authors present a new graphic, the predictiveness curve, which complements the risk modeling approach. It assesses the usefulness of a risk model when applied to the population. Although the predictiveness curve relates to classification performance measures, it also displays essential information about risk that is not displayed by the receiver operating characteristic curve. The authors propose that the predictiveness and classification performance of a marker, displayed together in an integrated plot, provide a comprehensive and cohesive assessment of a risk marker or model. The methods are demonstrated with data on prostate-specific antigen and risk factors from the Prostate Cancer Prevention Trial, 1993-2003.

摘要

有两种常用的生物标志物评估统计方法。一种方法是使用例如逻辑回归对疾病风险(或疾病结局)进行建模。如果一个标志物对风险有强烈影响,那么它就被认为是有用的。第二种方法是通过使用灵敏度、特异性、预测值和受试者工作特征曲线等指标来评估分类性能。关于哪种方法更合适存在争议。此外,这两种方法可能会对同一数据给出相互矛盾的结果。作者提出了一种新的图形——预测性曲线,它补充了风险建模方法。它评估风险模型应用于人群时的有用性。尽管预测性曲线与分类性能指标相关,但它也显示了受试者工作特征曲线未显示的关于风险的重要信息。作者建议,在一个综合图表中一起展示标志物的预测性和分类性能,可以对风险标志物或模型进行全面且连贯的评估。文中用1993 - 2003年前列腺癌预防试验中前列腺特异性抗原和风险因素的数据对这些方法进行了演示。

相似文献

3
Evaluating the predictiveness of a continuous marker.评估连续标志物的预测性。
Biometrics. 2007 Dec;63(4):1181-8. doi: 10.1111/j.1541-0420.2007.00814.x. Epub 2007 May 8.
6
Evaluating prognostic accuracy of biomarkers under competing risk.评估竞争风险下生物标志物的预后准确性。
Biometrics. 2012 Jun;68(2):388-96. doi: 10.1111/j.1541-0420.2011.01671.x. Epub 2011 Dec 7.

引用本文的文献

本文引用的文献

3
Evaluating the predictiveness of a continuous marker.评估连续标志物的预测性。
Biometrics. 2007 Dec;63(4):1181-8. doi: 10.1111/j.1541-0420.2007.00814.x. Epub 2007 May 8.
6
On criteria for evaluating models of absolute risk.论绝对风险模型的评估标准。
Biostatistics. 2005 Apr;6(2):227-39. doi: 10.1093/biostatistics/kxi005.
9
Variations in lung cancer risk among smokers.吸烟者患肺癌风险的差异。
J Natl Cancer Inst. 2003 Mar 19;95(6):470-8. doi: 10.1093/jnci/95.6.470.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验