Centre for Biomedical Technology, Technical University of Madrid, Madrid, Spain,
Neuroinformatics. 2013 Oct;11(4):405-34. doi: 10.1007/s12021-013-9186-1.
The analysis of the interdependence between time series has become an important field of research in the last years, mainly as a result of advances in the characterization of dynamical systems from the signals they produce, the introduction of concepts such as generalized and phase synchronization and the application of information theory to time series analysis. In neurophysiology, different analytical tools stemming from these concepts have added to the 'traditional' set of linear methods, which includes the cross-correlation and the coherency function in the time and frequency domain, respectively, or more elaborated tools such as Granger Causality.This increase in the number of approaches to tackle the existence of functional (FC) or effective connectivity (EC) between two (or among many) neural networks, along with the mathematical complexity of the corresponding time series analysis tools, makes it desirable to arrange them into a unified-easy-to-use software package. The goal is to allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of these analysis methods from a single integrated toolbox.Here we present HERMES ( http://hermes.ctb.upm.es ), a toolbox for the Matlab® environment (The Mathworks, Inc), which is designed to study functional and effective brain connectivity from neurophysiological data such as multivariate EEG and/or MEG records. It includes also visualization tools and statistical methods to address the problem of multiple comparisons. We believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis.
近年来,时间序列的相关性分析已成为一个重要的研究领域,这主要是由于人们能够从信号中更好地描述动力学系统的特征,引入了广义同步和相位同步等概念,并将信息论应用于时间序列分析。在神经生理学中,源自这些概念的不同分析工具补充了“传统”的线性方法集,其中包括时域和频域中的互相关和相干函数,或者更复杂的工具,如格兰杰因果关系。
为了应对两个(或多个)神经网络之间的功能(FC)或有效连接(EC)的存在,以及相应的时间序列分析工具的数学复杂性,增加了许多方法,因此将它们组织到一个统一的、易于使用的软件包中是可取的。目标是允许神经科学家、神经生理学家和相关领域的研究人员从单个集成工具包中轻松访问和使用这些分析方法。
在这里,我们介绍了 HERMES(http://hermes.ctb.upm.es),这是一个用于 Matlab®环境(The Mathworks,Inc)的工具箱,旨在从多变量 EEG 和/或 MEG 记录等神经生理学数据中研究功能和有效大脑连接。它还包括可视化工具和统计方法来解决多重比较问题。我们相信,这个工具箱将对所有从事大脑连接分析新兴领域的研究人员非常有帮助。