Suppr超能文献

基于代谢组规模的化合物集对代谢途径进行有监督的从头重建。

Supervised de novo reconstruction of metabolic pathways from metabolome-scale compound sets.

机构信息

Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.

出版信息

Bioinformatics. 2013 Jul 1;29(13):i135-44. doi: 10.1093/bioinformatics/btt244.

Abstract

MOTIVATION

The metabolic pathway is an important biochemical reaction network involving enzymatic reactions among chemical compounds. However, it is assumed that a large number of metabolic pathways remain unknown, and many reactions are still missing even in known pathways. Therefore, the most important challenge in metabolomics is the automated de novo reconstruction of metabolic pathways, which includes the elucidation of previously unknown reactions to bridge the metabolic gaps.

RESULTS

In this article, we develop a novel method to reconstruct metabolic pathways from a large compound set in the reaction-filling framework. We define feature vectors representing the chemical transformation patterns of compound-compound pairs in enzymatic reactions using chemical fingerprints. We apply a sparsity-induced classifier to learn what we refer to as 'enzymatic-reaction likeness', i.e. whether compound pairs are possibly converted to each other by enzymatic reactions. The originality of our method lies in the search for potential reactions among many compounds at a time, in the extraction of reaction-related chemical transformation patterns and in the large-scale applicability owing to the computational efficiency. In the results, we demonstrate the usefulness of our proposed method on the de novo reconstruction of 134 metabolic pathways in Kyoto Encyclopedia of Genes and Genomes (KEGG). Our comprehensively predicted reaction networks of 15 698 compounds enable us to suggest many potential pathways and to increase research productivity in metabolomics.

AVAILABILITY

Softwares are available on request. Supplementary material are available at http://web.kuicr.kyoto-u.ac.jp/supp/kot/ismb2013/.

摘要

动机

代谢途径是一个重要的生化反应网络,涉及化合物之间的酶反应。然而,据假设,大量的代谢途径仍然未知,即使在已知的途径中,许多反应仍然缺失。因此,代谢组学中最重要的挑战是自动从头重建代谢途径,其中包括阐明以前未知的反应来弥合代谢缺口。

结果

在本文中,我们在反应填充框架中开发了一种从大化合物集中重建代谢途径的新方法。我们使用化学指纹定义了代表酶反应中化合物-化合物对的化学转化模式的特征向量。我们应用稀疏诱导分类器来学习我们所谓的“酶反应相似性”,即化合物对是否可能通过酶反应相互转化。我们方法的新颖之处在于同时在许多化合物之间寻找潜在的反应,提取与反应相关的化学转化模式,以及由于计算效率而具有大规模适用性。在结果中,我们在京都基因与基因组百科全书(KEGG)中 134 个代谢途径的从头重建中展示了我们提出的方法的有效性。我们对 15698 种化合物的全面预测反应网络使我们能够提出许多潜在的途径,并提高代谢组学的研究生产力。

可用性

软件可根据要求提供。补充材料可在 http://web.kuicr.kyoto-u.ac.jp/supp/kot/ismb2013/ 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3dea/3694648/91f7b71f9f7f/btt244f1p.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验