Yamanishi Yoshihiro, Araki Michihiro, Gutteridge Alex, Honda Wataru, Kanehisa Minoru
Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
Bioinformatics. 2008 Jul 1;24(13):i232-40. doi: 10.1093/bioinformatics/btn162.
The identification of interactions between drugs and target proteins is a key area in genomic drug discovery. Therefore, there is a strong incentive to develop new methods capable of detecting these potential drug-target interactions efficiently.
In this article, we characterize four classes of drug-target interaction networks in humans involving enzymes, ion channels, G-protein-coupled receptors (GPCRs) and nuclear receptors, and reveal significant correlations between drug structure similarity, target sequence similarity and the drug-target interaction network topology. We then develop new statistical methods to predict unknown drug-target interaction networks from chemical structure and genomic sequence information simultaneously on a large scale. The originality of the proposed method lies in the formalization of the drug-target interaction inference as a supervised learning problem for a bipartite graph, the lack of need for 3D structure information of the target proteins, and in the integration of chemical and genomic spaces into a unified space that we call 'pharmacological space'. In the results, we demonstrate the usefulness of our proposed method for the prediction of the four classes of drug-target interaction networks. Our comprehensively predicted drug-target interaction networks enable us to suggest many potential drug-target interactions and to increase research productivity toward genomic drug discovery.
Softwares are available upon request.
Datasets and all prediction results are available at http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/.
识别药物与靶蛋白之间的相互作用是基因组药物发现中的一个关键领域。因此,迫切需要开发能够有效检测这些潜在药物-靶标相互作用的新方法。
在本文中,我们对人类中涉及酶、离子通道、G蛋白偶联受体(GPCR)和核受体的四类药物-靶标相互作用网络进行了表征,并揭示了药物结构相似性、靶标序列相似性与药物-靶标相互作用网络拓扑结构之间的显著相关性。然后,我们开发了新的统计方法,以同时从化学结构和基因组序列信息大规模预测未知的药物-靶标相互作用网络。所提出方法的创新性在于将药物-靶标相互作用推断形式化为二分图的监督学习问题,无需靶标蛋白的三维结构信息,并将化学和基因组空间整合到一个我们称为“药理空间”的统一空间中。在结果中,我们证明了我们提出的方法对预测四类药物-靶标相互作用网络的有用性。我们全面预测的药物-靶标相互作用网络使我们能够提出许多潜在的药物-靶标相互作用,并提高基因组药物发现的研究效率。
可根据要求提供软件。
数据集和所有预测结果可在http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/获取。