Suppr超能文献

学习生物化学网络的图表示及其在酶链接预测中的应用。

Learning graph representations of biochemical networks and its application to enzymatic link prediction.

机构信息

Department of Computer Science, Tufts University, Medford 02155, USA.

Department of Chemical and Biological Engineering, Tufts University, Medford 02155, USA.

出版信息

Bioinformatics. 2021 May 5;37(6):793-799. doi: 10.1093/bioinformatics/btaa881.

Abstract

MOTIVATION

The complete characterization of enzymatic activities between molecules remains incomplete, hindering biological engineering and limiting biological discovery. We develop in this work a technique, enzymatic link prediction (ELP), for predicting the likelihood of an enzymatic transformation between two molecules. ELP models enzymatic reactions cataloged in the KEGG database as a graph. ELP is innovative over prior works in using graph embedding to learn molecular representations that capture not only molecular and enzymatic attributes but also graph connectivity.

RESULTS

We explore transductive (test nodes included in the training graph) and inductive (test nodes not part of the training graph) learning models. We show that ELP achieves high AUC when learning node embeddings using both graph connectivity and node attributes. Further, we show that graph embedding improves link prediction by 30% in area under curve over fingerprint-based similarity approaches and by 8% over support vector machines. We compare ELP against rule-based methods. We also evaluate ELP for predicting links in pathway maps and for reconstruction of edges in reaction networks of four common gut microbiota phyla: actinobacteria, bacteroidetes, firmicutes and proteobacteria. To emphasize the importance of graph embedding in the context of biochemical networks, we illustrate how graph embedding can guide visualization.

AVAILABILITY AND IMPLEMENTATION

The code and datasets are available through https://github.com/HassounLab/ELP.

摘要

动机

分子间酶促活性的完整描述仍然不完整,这阻碍了生物工程的发展,并限制了生物学发现。我们在这项工作中开发了一种技术,即酶连接预测 (ELP),用于预测两种分子之间发生酶促转化的可能性。ELP 将 KEGG 数据库中编目的酶促反应建模为一个图。ELP 创新之处在于使用图嵌入来学习分子表示,这些表示不仅可以捕获分子和酶属性,还可以捕获图连接。

结果

我们探索了转导(测试节点包含在训练图中)和归纳(测试节点不是训练图的一部分)学习模型。我们表明,当使用图连接和节点属性学习节点嵌入时,ELP 可以实现高 AUC。此外,我们表明,与基于指纹的相似性方法相比,图嵌入将链接预测的 AUC 提高了 30%,与支持向量机相比提高了 8%。我们将 ELP 与基于规则的方法进行了比较。我们还评估了 ELP 在预测途径图中的链接和重建四个常见肠道微生物群落 phyla(放线菌门、拟杆菌门、厚壁菌门和变形菌门)的反应网络中的作用。为了强调图嵌入在生化网络中的重要性,我们说明了图嵌入如何指导可视化。

可用性和实现

代码和数据集可通过 https://github.com/HassounLab/ELP 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d595/8097755/179aad9cef7c/btaa881f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验