Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
Bioinformatics. 2013 Jul 1;29(13):i9-17. doi: 10.1093/bioinformatics/btt222.
Synaptic connections underlie learning and memory in the brain and are dynamically formed and eliminated during development and in response to stimuli. Quantifying changes in overall density and strength of synapses is an important pre-requisite for studying connectivity and plasticity in these cases or in diseased conditions. Unfortunately, most techniques to detect such changes are either low-throughput (e.g. electrophysiology), prone to error and difficult to automate (e.g. standard electron microscopy) or too coarse (e.g. magnetic resonance imaging) to provide accurate and large-scale measurements.
To facilitate high-throughput analyses, we used a 50-year-old experimental technique to selectively stain for synapses in electron microscopy images, and we developed a machine-learning framework to automatically detect synapses in these images. To validate our method, we experimentally imaged brain tissue of the somatosensory cortex in six mice. We detected thousands of synapses in these images and demonstrate the accuracy of our approach using cross-validation with manually labeled data and by comparing against existing algorithms and against tools that process standard electron microscopy images. We also used a semi-supervised algorithm that leverages unlabeled data to overcome sample heterogeneity and improve performance. Our algorithms are highly efficient and scalable and are freely available for others to use.
Code is available at http://www.cs.cmu.edu/∼saketn/detect_synapses/
突触连接是大脑学习和记忆的基础,它们在发育过程中以及对刺激的反应中动态形成和消除。量化突触整体密度和强度的变化,对于研究这些情况下或疾病状态下的连接性和可塑性是非常重要的前提。不幸的是,大多数检测这些变化的技术要么是低通量的(例如电生理学),容易出错且难以自动化(例如标准电子显微镜),要么是过于粗糙(例如磁共振成像),无法提供准确和大规模的测量。
为了便于进行高通量分析,我们使用了一种有 50 年历史的实验技术,选择性地在电子显微镜图像中对突触进行染色,并开发了一种机器学习框架,以自动检测这些图像中的突触。为了验证我们的方法,我们在六只小鼠的体感皮层脑组织上进行了实验成像。我们在这些图像中检测到了数千个突触,并通过使用手动标记数据进行交叉验证、与现有算法进行比较以及与处理标准电子显微镜图像的工具进行比较,证明了我们方法的准确性。我们还使用了一种半监督算法,利用未标记的数据来克服样本异质性并提高性能。我们的算法效率高且可扩展,并免费提供给其他人使用。