Dietlmeier Julia, McGuinness Kevin, Rugonyi Sandra, Wilson Teresa, Nuttall Alfred, O'Connor Noel E
Insight Centre for Data Analytics, Dublin City University, Glasnevin, Dublin 9, Ireland.
Oregon Health and Science University, Portland, Oregon, USA.
Pattern Recognit Lett. 2019 Dec;128:521-528. doi: 10.1016/j.patrec.2019.10.031. Epub 2019 Oct 31.
We present a novel AI-based approach to the few-shot automated segmentation of mitochondria in large-scale electron microscopy images. Our framework leverages convolutional features from a pre-trained deep multilayer convolutional neural network, such as VGG-16. We then train a binary gradient boosting classifier on the resulting high-dimensional feature hypercolumns. We extract VGG-16 features from the first four convolutional blocks and apply bilinear upsampling to resize the obtained maps to the input image size. This procedure yields a 2688-dimensional feature hypercolumn for each pixel in a 224 × 224 input image. We then apply -regularized logistic regression for supervised active feature selection to reduce dependencies among the features, to reduce overfitting, as well as to speed-up gradient boosting-based training. During inference we block process 1728 × 2022 large microscopy images. Our experiments show that in such a formulation of transfer learning our processing pipeline is able to achieve high-accuracy results on very challenging datasets containing a large number of irregularly shaped mitochondria in cardiac and outer hair cells. Our proposed few-shot training approach gives competitive performance with the state-of-the-art using far less training data.
我们提出了一种基于人工智能的新方法,用于在大规模电子显微镜图像中对线粒体进行少样本自动分割。我们的框架利用了预训练的深度多层卷积神经网络(如VGG-16)的卷积特征。然后,我们在得到的高维特征超列上训练一个二元梯度提升分类器。我们从最初的四个卷积块中提取VGG-16特征,并应用双线性上采样将获得的映射调整为输入图像大小。此过程为224×224输入图像中的每个像素生成一个2688维的特征超列。然后,我们应用 -正则化逻辑回归进行有监督的主动特征选择,以减少特征之间的依赖性,减少过拟合,并加快基于梯度提升的训练。在推理过程中,我们对1728×2022的大型显微镜图像进行分块处理。我们的实验表明,在这种迁移学习的形式中,我们的处理管道能够在包含心脏和外毛细胞中大量形状不规则的线粒体的极具挑战性的数据集中取得高精度的结果。我们提出的少样本训练方法使用远少于现有技术的训练数据,却能给出具有竞争力的性能。