Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
J Theor Biol. 2013 Oct 21;335:169-84. doi: 10.1016/j.jtbi.2013.06.016. Epub 2013 Jun 29.
Dendritic cells (DCs) capture pathogens and foreign antigen (Ag) in peripheral tissues and migrate to secondary lymphoid tissues, such as lymph nodes (LNs), where they present processed Ag as MHC-bound peptide (pMHC) to naïve T cells. Interactions between DCs and T cells result, over periods of hours, in activation, clonal expansion and differentiation of antigen-specific T cells, leading to primed cells that can now participate in immune responses. Two-photon microscopy (2PM) has been widely adopted to analyze lymphocyte dynamics and can serve as a powerful in vivo assay for cell trafficking and activation over short length and time scales. Linking biological phenomena between vastly different spatiotemporal scales can be achieved using a systems biology approach. We developed a 3D agent-based cellular model of a LN that allows for the simultaneous in silico simulation of T cell trafficking, activation and production of effector cells under different antigen (Ag) conditions. The model anatomy is based on in situ analysis of LN sections (from primates and mice) and cell dynamics based on quantitative measurements from 2PM imaging of mice. Our simulations make three important predictions. First, T cell encounters by DCs and T cell receptor (TCR) repertoire scanning are more efficient in a 3D model compared with 2D, suggesting that a 3D model is needed to analyze LN function. Second, LNs are able to produce primed CD4+T cells at the same efficiency over broad ranges of cognate frequencies (from 10(-5) to 10(-2)). Third, reducing the time that naïve T cells are required to bind DCs before becoming activated will increase the rate at which effector cells are produced. This 3D model provides a robust platform to study how T cell trafficking and activation dynamics relate to the efficiency of T cell priming and clonal expansion. We envision that this systems biology approach will provide novel insights for guiding vaccine development and understanding immune responses to infection.
树突状细胞(DCs)在外周组织中捕获病原体和外来抗原(Ag),并迁移到次级淋巴组织,如淋巴结(LNs),在那里它们将加工的 Ag 呈递为 MHC 结合的肽(pMHC)给初始 T 细胞。DCs 和 T 细胞之间的相互作用导致,在数小时的时间内,抗原特异性 T 细胞的激活、克隆扩增和分化,导致现在可以参与免疫反应的初始细胞。双光子显微镜(2PM)已被广泛用于分析淋巴细胞动力学,并且可以作为一种强大的体内测定法,用于在短长度和时间尺度上分析细胞迁移和激活。使用系统生物学方法可以实现将非常不同的时空尺度之间的生物学现象联系起来。我们开发了一种 LN 的基于代理的 3D 细胞模型,该模型允许在不同抗原(Ag)条件下同时进行 T 细胞迁移、激活和效应细胞产生的计算机模拟。该模型解剖结构基于 LN 切片的原位分析(来自灵长类动物和小鼠),以及基于小鼠 2PM 成像的定量测量的细胞动力学。我们的模拟有三个重要的预测。首先,与 2D 相比,3D 模型中 DCs 和 T 细胞受体(TCR)库扫描的 T 细胞遭遇更有效,这表明需要 3D 模型来分析 LN 功能。其次,在广泛的同源频率范围内(从 10(-5) 到 10(-2)),LN 能够以相同的效率产生初始 CD4+T 细胞。第三,减少初始 T 细胞与 DCs 结合后被激活所需的时间将增加效应细胞产生的速度。该 3D 模型提供了一个强大的平台,用于研究 T 细胞迁移和激活动力学与 T 细胞启动和克隆扩增效率的关系。我们设想,这种系统生物学方法将为指导疫苗开发和理解感染后的免疫反应提供新的见解。
J Theor Biol. 2013-6-29
J Immunol. 2010-2-12
Sci Signal. 2008-3-25
Curr Opin Biomed Eng. 2019-9
Front Immunol. 2019-6-13
Wiley Interdiscip Rev Syst Biol Med. 2019-7-1
Computation (Basel). 2018-12
PLoS Comput Biol. 2012-11-15
Nat Rev Immunol. 2012-9-28
Proc Natl Acad Sci U S A. 2010-11-8
Wiley Interdiscip Rev Syst Biol Med. 2010
J Immunol. 2010-2-12