Suppr超能文献

生物多尺度模型的全局敏感性分析

Global sensitivity analysis of biological multi-scale models.

作者信息

Renardy Marissa, Hult Caitlin, Evans Stephanie, Linderman Jennifer J, Kirschner Denise E

机构信息

University of Michigan Medical School, Department of Microbiology and Immunology.

University of Michigan, Department of Chemical Engineering.

出版信息

Curr Opin Biomed Eng. 2019 Sep;11:109-116. doi: 10.1016/j.cobme.2019.09.012. Epub 2019 Oct 15.

Abstract

Mathematical models of biological systems need to both reflect and manage the inherent complexities of biological phenomena. Through their versatility and ability to capture behavior at multiple scales, multi-scale models offer a valuable approach. Due to the typically nonlinear and stochastic nature of multi-scale models as well as unknown parameter values, various types of uncertainty are present; thus, effective assessment and quantification of such uncertainty through sensitivity analysis is important. In this review, we discuss global sensitivity analysis in the context of multi-scale and multi-compartment models and highlight its value in model development and analysis. We present an overview of sensitivity analysis methods, approaches for extending such methods to a multi-scale setting, and examples of how sensitivity analysis can inform model reduction. Through schematics and references to past work, we aim to emphasize the advantages and usefulness of such techniques.

摘要

生物系统的数学模型需要既能反映又能管理生物现象固有的复杂性。多尺度模型凭借其通用性以及在多个尺度上捕捉行为的能力,提供了一种有价值的方法。由于多尺度模型通常具有非线性和随机性,以及参数值未知,存在各种类型的不确定性;因此,通过敏感性分析对这种不确定性进行有效评估和量化很重要。在本综述中,我们在多尺度和多隔室模型的背景下讨论全局敏感性分析,并强调其在模型开发和分析中的价值。我们概述了敏感性分析方法、将此类方法扩展到多尺度设置的方法,以及敏感性分析如何为模型简化提供信息的示例。通过示意图和对以往工作的引用,我们旨在强调此类技术的优势和实用性。

相似文献

1
Global sensitivity analysis of biological multi-scale models.生物多尺度模型的全局敏感性分析
Curr Opin Biomed Eng. 2019 Sep;11:109-116. doi: 10.1016/j.cobme.2019.09.012. Epub 2019 Oct 15.
6
Multi-class and multi-scale models of complex biological phenomena.复杂生物现象的多类别和多尺度模型。
Curr Opin Biotechnol. 2016 Jun;39:167-173. doi: 10.1016/j.copbio.2016.04.002. Epub 2016 Apr 23.
7
Evaluating model reduction under parameter uncertainty.评估参数不确定性下的模型简化。
BMC Syst Biol. 2018 Jul 27;12(1):79. doi: 10.1186/s12918-018-0602-x.
10
Bio-inspired homogeneous multi-scale place recognition.受生物启发的均匀多尺度位置识别
Neural Netw. 2015 Dec;72:48-61. doi: 10.1016/j.neunet.2015.10.002. Epub 2015 Oct 29.

引用本文的文献

1
Dominant ionic currents in rabbit ventricular action potential dynamics.兔心室动作电位动力学中的主要离子电流。
PLoS One. 2025 Jul 30;20(7):e0328261. doi: 10.1371/journal.pone.0328261. eCollection 2025.
7
A review of mechanistic learning in mathematical oncology.机制学习在数学肿瘤学中的研究综述。
Front Immunol. 2024 Mar 12;15:1363144. doi: 10.3389/fimmu.2024.1363144. eCollection 2024.

本文引用的文献

1
The Role of Dimensionality in Understanding Granuloma Formation.维度在理解肉芽肿形成中的作用。
Computation (Basel). 2018 Dec;6(4). doi: 10.3390/computation6040058. Epub 2018 Nov 14.
2
A topological approach to selecting models of biological experiments.拓扑学方法在生物实验模型选择中的应用。
PLoS One. 2019 Mar 15;14(3):e0213679. doi: 10.1371/journal.pone.0213679. eCollection 2019.
6
Using Emulation to Engineer and Understand Simulations of Biological Systems.利用仿真技术设计和理解生物系统的模拟。
IEEE/ACM Trans Comput Biol Bioinform. 2020 Jan-Feb;17(1):302-315. doi: 10.1109/TCBB.2018.2843339. Epub 2018 Jun 7.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验