Suppr超能文献

多形性胶质母细胞瘤生存的临床和分子模型

Clinical and molecular models of glioblastoma multiforme survival.

作者信息

Piccolo Stephen R, Frey Lewis J

机构信息

Department of Pharmacology and Toxicology, University of Utah, 201 Presidents Circle, Salt Lake City, 84112 UT, USA.

出版信息

Int J Data Min Bioinform. 2013;7(3):245-65. doi: 10.1504/ijdmb.2013.053310.

Abstract

Glioblastoma multiforme (GBM), a highly aggressive form of brain cancer, results in a median survival of 12-15 months. For decades, researchers have explored the effects of clinical and molecular factors on this disease and have identified several candidate prognostic markers. In this study, we evaluated the use of multivariate classification models for differentiating between subsets of patients who survive a relatively long or short time. Data for this study came from The Cancer Genome Atlas (TCGA), a public repository containing clinical, treatment, histological and biomolecular variables for hundreds of patients. We applied variable-selection and classification algorithms in a cross-validated design and observed that predictive performance of the resulting models varied substantially across the algorithms and categories of data. The best-performing models were based on age, treatments and global DNA methylation. In this paper, we summarise our findings, discuss lessons learned in analysing TCGA data and offer recommendations for performing such analyses.

摘要

多形性胶质母细胞瘤(GBM)是一种侵袭性很强的脑癌,其患者的中位生存期为12至15个月。几十年来,研究人员一直在探索临床和分子因素对这种疾病的影响,并确定了几个候选预后标志物。在本研究中,我们评估了使用多变量分类模型来区分生存期相对较长或较短的患者亚组。本研究的数据来自癌症基因组图谱(TCGA),这是一个公共数据库,包含数百名患者的临床、治疗、组织学和生物分子变量。我们在交叉验证设计中应用了变量选择和分类算法,观察到所得模型的预测性能在不同算法和数据类别之间有很大差异。表现最佳的模型基于年龄、治疗方法和整体DNA甲基化。在本文中,我们总结了我们的发现,讨论了在分析TCGA数据过程中吸取的经验教训,并为进行此类分析提供了建议。

相似文献

引用本文的文献

1
Machine learning analysis of TCGA cancer data.TCGA癌症数据的机器学习分析。
PeerJ Comput Sci. 2021 Jul 12;7:e584. doi: 10.7717/peerj-cs.584. eCollection 2021.
6
Information-Based Medicine in Glioma Patients: A Clinical Perspective.基于信息的神经胶质瘤患者医学:临床视角
Comput Math Methods Med. 2018 Jun 13;2018:8572058. doi: 10.1155/2018/8572058. eCollection 2018.

本文引用的文献

1
Multi-platform gene-expression mining and marker gene analysis.多平台基因表达挖掘与标记基因分析。
Int J Data Min Bioinform. 2011;5(5):485-503. doi: 10.1504/ijdmb.2011.043030.
2
The UCSC Genome Browser database: update 2011.加州大学圣克鲁兹分校基因组浏览器数据库:2011年更新
Nucleic Acids Res. 2011 Jan;39(Database issue):D876-82. doi: 10.1093/nar/gkq963. Epub 2010 Oct 18.
4
A multigene predictor of outcome in glioblastoma.胶质母细胞瘤的多基因预后预测指标。
Neuro Oncol. 2010 Jan;12(1):49-57. doi: 10.1093/neuonc/nop007. Epub 2009 Oct 20.
5
Gene identification and survival prediction with Lp Cox regression and novel similarity measure.
Int J Data Min Bioinform. 2009;3(4):398-408. doi: 10.1504/ijdmb.2009.029203.
6
Cancer statistics, 2009.2009年癌症统计数据。
CA Cancer J Clin. 2009 Jul-Aug;59(4):225-49. doi: 10.3322/caac.20006. Epub 2009 May 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验