Suppr超能文献

Akita(+/Ins2)-衍生β细胞中线粒体生物能量功能障碍和氧化应激。

Dysfunctional mitochondrial bioenergetics and oxidative stress in Akita(+/Ins2)-derived β-cells.

机构信息

Department of Pathology and.

出版信息

Am J Physiol Endocrinol Metab. 2013 Sep 1;305(5):E585-99. doi: 10.1152/ajpendo.00093.2013. Epub 2013 Jul 2.

Abstract

Insulin release from pancreatic β-cells plays a critical role in blood glucose homeostasis, and β-cell dysfunction leads to the development of diabetes mellitus. In cases of monogenic type 1 diabetes mellitus (T1DM) that involve mutations in the insulin gene, we hypothesized that misfolding of insulin could result in endoplasmic reticulum (ER) stress, oxidant production, and mitochondrial damage. To address this, we used the Akita(+/Ins2) T1DM model in which misfolding of the insulin 2 gene leads to ER stress-mediated β-cell death and thapsigargin to induce ER stress in two different β-cell lines and in intact mouse islets. Using transformed pancreatic β-cell lines generated from wild-type Ins2(+/+) (WT) and Akita(+/Ins2) mice, we evaluated cellular bioenergetics, oxidative stress, mitochondrial protein levels, and autophagic flux to determine whether changes in these processes contribute to β-cell dysfunction. In addition, we induced ER stress pharmacologically using thapsigargin in WT β-cells, INS-1 cells, and intact mouse islets to examine the effects of ER stress on mitochondrial function. Our data reveal that Akita(+/Ins2)-derived β-cells have increased mitochondrial dysfunction, oxidant production, mtDNA damage, and alterations in mitochondrial protein levels that are not corrected by autophagy. Together, these findings suggest that deterioration in mitochondrial function due to an oxidative environment and ER stress contributes to β-cell dysfunction and could contribute to T1DM in which mutations in insulin occur.

摘要

胰岛β细胞分泌的胰岛素在血糖稳态中起着关键作用,β细胞功能障碍导致糖尿病的发生。在涉及胰岛素基因突变的单基因 1 型糖尿病(T1DM)病例中,我们假设胰岛素的错误折叠可能导致内质网(ER)应激、氧化产物产生和线粒体损伤。为了解决这个问题,我们使用了 Akita(+/Ins2) T1DM 模型,该模型中胰岛素 2 基因的错误折叠导致 ER 应激介导的β细胞死亡,并用他普西葛林(thapsigargin)诱导两种不同的β细胞系和完整的小鼠胰岛中的 ER 应激。使用从野生型 Ins2(+/+)(WT)和 Akita(+/Ins2)小鼠生成的转化胰岛β细胞系,我们评估了细胞生物能量学、氧化应激、线粒体蛋白水平和自噬通量,以确定这些过程的变化是否导致β细胞功能障碍。此外,我们通过他普西葛林(thapsigargin)在 WT β细胞、INS-1 细胞和完整的小鼠胰岛中诱导 ER 应激,以研究 ER 应激对线粒体功能的影响。我们的数据表明,Akita(+/Ins2)衍生的β细胞具有增加的线粒体功能障碍、氧化产物产生、mtDNA 损伤以及线粒体蛋白水平的改变,这些改变不能通过自噬纠正。总之,这些发现表明,由于氧化环境和 ER 应激导致的线粒体功能恶化导致β细胞功能障碍,并可能导致胰岛素发生突变的 T1DM。

相似文献

1
Dysfunctional mitochondrial bioenergetics and oxidative stress in Akita(+/Ins2)-derived β-cells.
Am J Physiol Endocrinol Metab. 2013 Sep 1;305(5):E585-99. doi: 10.1152/ajpendo.00093.2013. Epub 2013 Jul 2.
2
Proinsulin atypical maturation and disposal induces extensive defects in mouse Ins2+/Akita β-cells.
PLoS One. 2012;7(4):e35098. doi: 10.1371/journal.pone.0035098. Epub 2012 Apr 3.
3
The NLRP3 inflammasome is dispensable for ER stress-induced pancreatic β-cell damage in Akita mice.
Biochem Biophys Res Commun. 2015 Oct 23;466(3):300-5. doi: 10.1016/j.bbrc.2015.09.009. Epub 2015 Sep 7.
5
Glucokinase activation ameliorates ER stress-induced apoptosis in pancreatic β-cells.
Diabetes. 2013 Oct;62(10):3448-58. doi: 10.2337/db13-0052. Epub 2013 Jun 25.
6
Deletion of p47phox attenuates the progression of diabetic nephropathy and reduces the severity of diabetes in the Akita mouse.
Diabetologia. 2012 Sep;55(9):2522-32. doi: 10.1007/s00125-012-2586-1. Epub 2012 Jun 1.
7
Endoplasmic reticulum stress contributes to NMDA-induced pancreatic β-cell dysfunction in a CHOP-dependent manner.
Life Sci. 2019 Sep 1;232:116612. doi: 10.1016/j.lfs.2019.116612. Epub 2019 Jun 28.

引用本文的文献

1
Renalase inhibition defends against acute and chronic β cell stress by regulating cell metabolism.
Mol Metab. 2025 May;95:102115. doi: 10.1016/j.molmet.2025.102115. Epub 2025 Feb 21.
3
Cathepsin D overexpression in the nervous system rescues lethality and A42 accumulation of cathepsin D systemic knockout .
Acta Pharm Sin B. 2023 Oct;13(10):4172-4184. doi: 10.1016/j.apsb.2023.07.015. Epub 2023 Jul 20.
4
Therapeutic Potential of Different Natural Products for the Treatment of Alzheimer's Disease.
Oxid Med Cell Longev. 2022 Jul 22;2022:6873874. doi: 10.1155/2022/6873874. eCollection 2022.
5
Unfolded Protein Response Differentially Modulates the Platelet Phenotype.
Circ Res. 2022 Aug 5;131(4):290-307. doi: 10.1161/CIRCRESAHA.121.320530. Epub 2022 Jul 18.
7
OGT Regulates Mitochondrial Biogenesis and Function via Diabetes Susceptibility Gene Pdx1.
Diabetes. 2021 Nov;70(11):2608-2625. doi: 10.2337/db21-0468. Epub 2021 Aug 30.
8
Traditional Chinese medicine for anti-Alzheimer's disease: berberine and evodiamine from .
Chin Med. 2020 Aug 5;15:82. doi: 10.1186/s13020-020-00359-1. eCollection 2020.
10
Nuclear receptor binding factor 2 (NRBF2) is required for learning and memory.
Lab Invest. 2020 Sep;100(9):1238-1251. doi: 10.1038/s41374-020-0433-4. Epub 2020 Apr 29.

本文引用的文献

1
Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure.
Cell Metab. 2013 Apr 2;17(4):491-506. doi: 10.1016/j.cmet.2013.03.002.
4
Stimulation of autophagy improves endoplasmic reticulum stress-induced diabetes.
Diabetes. 2013 Apr;62(4):1227-37. doi: 10.2337/db12-1474. Epub 2012 Dec 28.
5
6
Integration of cellular bioenergetics with mitochondrial quality control and autophagy.
Biol Chem. 2012 Dec;393(12):1485-1512. doi: 10.1515/hsz-2012-0198.
7
Monogenic models: what have the single gene disorders taught us?
Curr Diab Rep. 2012 Dec;12(6):659-66. doi: 10.1007/s11892-012-0325-0.
8
VDAC: old protein with new roles in diabetes.
Am J Physiol Cell Physiol. 2012 Nov 15;303(10):C1055-60. doi: 10.1152/ajpcell.00087.2012. Epub 2012 Sep 12.
9
Autophagy plays a protective role in endoplasmic reticulum stress-mediated pancreatic β cell death.
Autophagy. 2012 Dec;8(12):1757-68. doi: 10.4161/auto.21994. Epub 2012 Sep 5.
10
Mitochondrial dysfunction in pancreatic β cells.
Trends Endocrinol Metab. 2012 Sep;23(9):477-87. doi: 10.1016/j.tem.2012.06.002. Epub 2012 Jul 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验