Suppr超能文献

错配修复缺陷酵母中自发突变的突变率、谱和全基因组分布。

Mutation rates, spectra, and genome-wide distribution of spontaneous mutations in mismatch repair deficient yeast.

机构信息

Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544-1014.

出版信息

G3 (Bethesda). 2013 Sep 4;3(9):1453-65. doi: 10.1534/g3.113.006429.

Abstract

DNA mismatch repair is a highly conserved DNA repair pathway. In humans, germline mutations in hMSH2 or hMLH1, key components of mismatch repair, have been associated with Lynch syndrome, a leading cause of inherited cancer mortality. Current estimates of the mutation rate and the mutational spectra in mismatch repair defective cells are primarily limited to a small number of individual reporter loci. Here we use the yeast Saccharomyces cerevisiae to generate a genome-wide view of the rates, spectra, and distribution of mutation in the absence of mismatch repair. We performed mutation accumulation assays and next generation sequencing on 19 strains, including 16 msh2 missense variants implicated in Lynch cancer syndrome. The mutation rate for DNA mismatch repair null strains was approximately 1 mutation per genome per generation, 225-fold greater than the wild-type rate. The mutations were distributed randomly throughout the genome, independent of replication timing. The mutation spectra included insertions/deletions at homopolymeric runs (87.7%) and at larger microsatellites (5.9%), as well as transitions (4.5%) and transversions (1.9%). Additionally, repeat regions with proximal repeats are more likely to be mutated. A bias toward deletions at homopolymers and insertions at (AT)n microsatellites suggests a different mechanism for mismatch generation at these sites. Interestingly, 5% of the single base pair substitutions might represent double-slippage events that occurred at the junction of immediately adjacent repeats, resulting in a shift in the repeat boundary. These data suggest a closer scrutiny of tumor suppressors with homopolymeric runs with proximal repeats as the potential drivers of oncogenesis in mismatch repair defective cells.

摘要

DNA 错配修复是一种高度保守的 DNA 修复途径。在人类中,错配修复关键组件 hMSH2 或 hMLH1 的种系突变与林奇综合征有关,林奇综合征是遗传性癌症死亡率的主要原因。目前对缺失错配修复的细胞中突变率和突变谱的估计主要限于少数个别报告基因座。在这里,我们使用酵母酿酒酵母来生成在没有错配修复的情况下,突变在基因组范围内的速率、谱和分布的全景图。我们对 19 个菌株进行了突变积累测定和下一代测序,其中包括 16 个与林奇癌症综合征相关的 msh2 错义变体。DNA 错配修复缺失菌株的突变率约为每个基因组每代 1 个突变,比野生型速率高 225 倍。突变随机分布在整个基因组中,与复制时间无关。突变谱包括在同源多聚体(87.7%)和较大微卫星(5.9%)处的插入/缺失,以及转换(4.5%)和颠换(1.9%)。此外,具有近端重复的重复区域更有可能发生突变。在这些位点上,同源多聚体的缺失偏向和(AT)n 微卫星的插入偏向表明了一种不同的错配生成机制。有趣的是,5%的单碱基替换可能代表发生在紧邻重复交界处的双滑链事件,导致重复边界的移动。这些数据表明,在缺失错配修复的细胞中,具有近端重复的同源多聚体的肿瘤抑制基因需要更仔细的检查,因为它们可能是致癌的潜在驱动因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fac5/3755907/e2b4e6109698/1453f1.jpg

相似文献

2
Detection of heterozygous mutations in the genome of mismatch repair defective diploid yeast using a Bayesian approach.
Genetics. 2010 Oct;186(2):493-503. doi: 10.1534/genetics.110.120105. Epub 2010 Jul 26.
3
Instability throughout the Saccharomyces cerevisiae genome resulting from Pms1 endonuclease deficiency.
Nucleic Acids Res. 2024 Sep 9;52(16):9574-9585. doi: 10.1093/nar/gkae616.
4
Functional characterization of pathogenic human MSH2 missense mutations in Saccharomyces cerevisiae.
Genetics. 2007 Oct;177(2):707-21. doi: 10.1534/genetics.107.071084. Epub 2007 Aug 24.
6
The rate of spontaneous mutations in yeast deficient for MutSβ function.
G3 (Bethesda). 2023 Mar 9;13(3). doi: 10.1093/g3journal/jkac330.
7
Variation in efficiency of DNA mismatch repair at different sites in the yeast genome.
Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8639-43. doi: 10.1073/pnas.0503415102. Epub 2005 Jun 2.
8
Cell-cycle and DNA damage regulation of the DNA mismatch repair protein Msh2 occurs at the transcriptional and post-transcriptional level.
DNA Repair (Amst). 2013 Feb 1;12(2):97-109. doi: 10.1016/j.dnarep.2012.11.002. Epub 2012 Dec 20.
10
Proteasome inhibition rescues clinically significant unstable variants of the mismatch repair protein Msh2.
Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):246-51. doi: 10.1073/pnas.1215510110. Epub 2012 Dec 17.

引用本文的文献

2
Instability throughout the Saccharomyces cerevisiae genome resulting from Pms1 endonuclease deficiency.
Nucleic Acids Res. 2024 Sep 9;52(16):9574-9585. doi: 10.1093/nar/gkae616.
3
Loss-of-function mutations are main drivers of adaptations during short-term evolution.
Sci Rep. 2024 Mar 26;14(1):7128. doi: 10.1038/s41598-024-57694-8.
7
Distinct mutational processes shape selection of MHC class I and class II mutations across primary and metastatic tumors.
Cell Rep. 2023 Aug 29;42(8):112965. doi: 10.1016/j.celrep.2023.112965. Epub 2023 Aug 21.
8
Sequence variants affecting the genome-wide rate of germline microsatellite mutations.
Nat Commun. 2023 Jun 29;14(1):3855. doi: 10.1038/s41467-023-39547-6.
10
Identifying Targets of Selection in Laboratory Evolution Experiments.
J Mol Evol. 2023 Jun;91(3):345-355. doi: 10.1007/s00239-023-10096-2. Epub 2023 Feb 21.

本文引用的文献

1
Proteasome inhibition rescues clinically significant unstable variants of the mismatch repair protein Msh2.
Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):246-51. doi: 10.1073/pnas.1215510110. Epub 2012 Dec 17.
2
Mismatch repair balances leading and lagging strand DNA replication fidelity.
PLoS Genet. 2012;8(10):e1003016. doi: 10.1371/journal.pgen.1003016. Epub 2012 Oct 11.
3
Mutation hot spots in yeast caused by long-range clustering of homopolymeric sequences.
Cell Rep. 2012 Jan 26;1(1):36-42. doi: 10.1016/j.celrep.2011.10.003.
4
Comprehensive molecular characterization of human colon and rectal cancer.
Nature. 2012 Jul 18;487(7407):330-7. doi: 10.1038/nature11252.
5
Lynch syndrome: new tales from the crypt.
Lancet Oncol. 2012 Jun;13(6):562-4. doi: 10.1016/S1470-2045(12)70134-1. Epub 2012 May 1.
6
Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration.
Brief Bioinform. 2013 Mar;14(2):178-92. doi: 10.1093/bib/bbs017. Epub 2012 Apr 19.
7
A genome-wide analysis of common fragile sites: what features determine chromosomal instability in the human genome?
Genome Res. 2012 Jun;22(6):993-1005. doi: 10.1101/gr.134395.111. Epub 2012 Mar 28.
8
Lynch or not Lynch? Is that always a question?
Adv Cancer Res. 2012;113:121-66. doi: 10.1016/B978-0-12-394280-7.00004-X.
9
Clinical aspect and molecular mechanism of DNA aneuploidy in gastric cancers.
J Gastroenterol. 2012 Apr;47(4):351-8. doi: 10.1007/s00535-012-0565-4. Epub 2012 Mar 9.
10
Biochemical analysis of the human mismatch repair proteins hMutSα MSH2(G674A)-MSH6 and MSH2-MSH6(T1219D).
J Biol Chem. 2012 Mar 23;287(13):9777-9791. doi: 10.1074/jbc.M111.316919. Epub 2012 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验